In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Non-associative learning and serotonin induce similar bi-directional changes in excitability of a neuron critical for learning in the medicinal leech.

Journal of Neuroscience 2001 Februrary 16
In studies of the cellular basis of learning, much attention has focused on plasticity in synaptic transmission in terms of transmitter release and the number or responsiveness of neurotransmitter receptors. However, changes in postsynaptic excitability independent of receptors may also play an important role. Changes in excitability of a single interneuron in the leech, the S-cell, were measured during non-associative learning of the whole-body shortening reflex. This interneuron was chosen because it is known to be necessary for sensitization and full dishabituation of the shortening response. During sensitization, S-cell excitability increased, and this enhancement corresponded to facilitation of the shortening reflex and increased S-cell activity during the elicited response. During habituation training, there was a decrement in both the shortening reflex and the elicited S-cell activity, along with decreased S-cell excitability. Conversely, dishabituation facilitated both the shortening response and S-cell activity during shortening, with an accompanying increase in S-cell excitability. Bath application of 1-10 micrometer serotonin (5HT), a modulatory neurotransmitter that is critical for sensitization, for full dishabituation, and for associative learning, increased S-cell excitability. S-cell excitability also increased after stimulation of the serotonergic Retzius cells. However, focal application of serotonin onto the S-cell soma hyperpolarized the interneuron, and bath application of a lower dose of serotonin (0.1 micrometer) decreased excitability. The observed changes in postsynaptic excitability appear to contribute to non-associative learning, and modulatory neurotransmitters, such as serotonin, evidently help regulate excitability. Such changes in S-cell excitability may also be relevant for more complex, associative forms of learning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app