JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Electrophysiological effects of endothelin-1 and their relationship to contraction in rat renal arterial smooth muscle.

The electophysiological effects of endothelin-1 (ET-1) and their relationship to contraction remain unclear in the renal circulation. Using endotheliumdenuded arteries from the main branch of the renal artery proximal to the kidney of the rat, we have examined its effects on tension and conducted parallel patch-clamp measurements using freshly isolated smooth muscle cells from this tissue. Pharmacological experiments revealed that ET-1 produced constriction of renal arteries dependent on the influx of extracellular Ca(2+), mediated solely through ET(A) receptor stimulation. Current-clamp experiments revealed that renal arterial myocytes had a resting membrane potential of approximately 32 mV, with the majority of cells exhibiting spontaneous transient hyperpolarizations (STHPs). Application of ET-1 produced depolarization and in those cells exhibiting STHPs, either caused their inhibition or made them occur regularly. Under voltage-clamp conditions cells were observed to exhibit spontaneous transient outward currents (STOCs) inhibited by iberiotoxin. Application of voltage-ramps revealed an outward current activated at approximately -30 mV, sensitive to both 4-AP and TEA. Taken together these results suggest that renal arterial myocytes possess both delayed rectifying K(+) (K(V)) and Ca(2+)-activated K(+) (BK(Ca)) channels. Under voltage-clamp, ET-1 attenuated the outward current and reduced the magnitude and incidence of STOCs: effects mediated solely as a consequence of ET(A) receptor stimulation. Thus, in conclusion, activation of ET(A) receptors by ET-1 causes inhibition of K(V) and BK(Ca) channel activity, which could promote and/or maintain membrane depolarization. This effect is likely to favour L-type Ca(2+) channel activity providing an influx pathway for extracellular Ca(2+) essential for contraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app