Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Detection of polycistronic and overlapping bacteriophage T7 late transcripts by in vitro translation.

Bacteriphage T7 RNAs have been fractionated on preparative polyacrylamide gels. The in vitro coding capacities of the RNAs have been determined by translation of the RNAs in a cell-free system and analysis of the polypeptide products on sodium dodecyl sulfate polyacrylamide slab gels. The T7 early RNAs are fractionated according to their molecular weight and without intermolecular aggregation. Fractionation of the late T7 RNAs gives rise to 10 major RNAs, ranging in size from 0.29 X 10(6) daltons to 2.05 X 10(6) daltons. Five of these RNAs are polycistronic and overlapping species are present for some T7 proteins. In particular, the gene 10 protein, the major capsid protein, is translated from at least three mRNAs. The smallest of these gene 10 mRNAs is monocistronic. A second gene 10 mRNA also codes for the gene 9 protein, and a third gene 10 mRNA codes for both gene 8 and gene 9 proteins. The T7 gene 3.5 protein, a T7 lytic enzyme, is also translated from several differently sized mRNAs. Comparison with published data on in vitro transcription by T7 RNA polymerase suggestes that transcription from multiple initiation sites and cleavage of larger precursors are both involved in generating the late T7 transcripts we observe. The overlapping mode of transcription could serve to amplify certain gene products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app