Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Purification, structural characterization, and myotropic activity of endothelin from trout, Oncorhynchus mykiss.

Endothelin (ET) from a nontetrapod species has never been characterized, either structurally or biologically. A single molecular form of trout ET with 21-amino-acid residues was isolated in pure form from an extract of the kidney of the steelhead trout, Oncorhynchus mykiss and its primary structure established as Cys-Ser-Cys-Ala-Thr-Phe-Leu-Asp-Lys-Glu10-Cys-Val-Tyr-Phe-Cys-His- L eu-Asp-Ile-Ile20-Trp. This amino acid sequence shows only three substitutions (Ala4-->Ser, Thr5-->Ser, and Phe6-->Trp) compared with human ET-2, demonstrating that the structure of the peptide has been well conserved during evolution and that the pathway of posttranslational processing of preproendothelin in the trout is probably similar to that in mammals. Synthetic trout ET produced concentration-dependent constrictions of isolated rings of vascular tissue from trout efferent branchial artery (EBA; pD2 = 7. 90 +/- 0.06, n = 5), caeliacomesenteric artery (pD2 = 8.03 +/- 0. 04, n = 4), anterior cardinal vein (ACV; pD2 = 8.57 +/- 0.25, n = 4), and rat abdominal aorta (AO; pD2 = 8.86 +/- 0.08, n = 7). Trout and rat vessels were more sensitive to mammalian ET-1 than to trout ET (pD(2) for human ET-1 in: EBA = 9.12 +/- 0.14; ACV = 9.90 +/- 0.15; AO = 8.86 +/- 0.08), but there was no significant difference in the maximum tension produced by either peptide in these vessels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app