JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Pharmacological manipulation of Ins(1,4,5)P3 signaling mimics preconditioning in rabbit heart.

Recent evidence revealed biphasic alterations in myocardial concentrations of the second messenger inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] with ischemic preconditioning (PC), i.e., increase during brief PC ischemia and decrease early during sustained test occlusion. Our aim was to determine whether an agonist and an antagonist of Ins(1,4,5)P(3) signaling (D-myo-inositol-1,4,5-trisphosphate hexasodium salt [D-myo-Ins(1,4, 5)P3] and 2-aminoethoxydiphenyl borate (2-APB), respectively), given such that they mimic this biphasic profile, would mimic infarct size reduction with PC. To test this concept, isolated, buffer-perfused rabbit hearts received no intervention (control), ischemic PC, D-myo-Ins(1,4,5)P3, D-myo-Ins(1,4,5)P(3) + PC, 2-APB, or 2-APB + PC. All hearts then underwent 30-min coronary occlusion and 2 h reflow, and infarct size was delineated by tetrazolium staining. In addition, the effects of D-myo-Ins(1,4,5)P3 and 2-APB on Ins(1,4,5)P3 signaling were evaluated in isolated fura 2-loaded rat cardiomyocytes. Mean infarct size was reduced with PC and in all D-myo-Ins(1,4,5)P3- and 2-APB-treated groups versus control (59 and 42-55%, respectively, vs. 80% of myocardium at risk, P < 0.05). Thus pharmacological manipulation of Ins(1,4,5)P3 signaling mimics the cardioprotection achieved with ischemic PC in rabbit heart.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app