Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Inhibition of signaling through the B cell antigen receptor by the protooncogene product, c-Cbl, requires Syk tyrosine 317 and the c-Cbl phosphotyrosine-binding domain.

Journal of Immunology 1999 December 2
The Syk protein-tyrosine kinase couples the B cell Ag receptor (BCR) to intracellular biochemical pathways. Syk becomes phosphorylated on multiple tyrosine residues upon receptor cross-linking. Tyrosine 317 is a site of phosphorylation located within the linker region of Syk that separates the amino-terminal, tandem pair of SH2 domains from the carboxyl-terminal catalytic domain. The amino acid sequence surrounding phosphotyrosine 317 matches the consensus sequence for recognition by the phosphotyrosine-binding (PTB) domain of the protooncogene product, c-Cbl. The overexpression of c-Cbl in DT40 B cells inhibits Ag receptor-mediated activation of the NF-AT transcription factor. The ability of overexpressed c-Cbl to inhibit signaling requires both Syk tyrosine 317 and a functional c-Cbl PTB domain. Mutant forms of Syk lacking tyrosine 317 exhibit an enhanced ability to couple the BCR to pathways leading to the activation of both NF-AT and Elk-1. Coimmunoprecipitation experiments indicate that Syk phosphotyrosine 317 and the c-Cbl PTB domain enhance, but are not required for, all interactions between these two proteins. In unstimulated cells, c-Cbl and Syk can be isolated in a complex that also contains tubulin. A mutant form of Syk lacking tyrosine at position 317 exhibits an enhanced ability to interact with a diphosphopeptide modeled on the immunoreceptor tyrosine-based activation motif of the CD79a component of the Ag receptor. These studies indicate that c-Cbl may contribute to the regulation of BCR signaling by modulating the ability of Syk to associate with the BCR and couple the receptor to intracellular signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app