Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effects of sphingosine 1-phosphate on pacemaker activity in rabbit sino-atrial node cells.

The effects of sphingosine 1-phosphate (S-1-P) on pacemaker activity and underlying membrane currents were studied in isolated rabbit sino-atrial (SA) node cells. S-1-P (0.1 microM) reversibly increased the cycle length of spontaneous pacemaker activity from 560 to 1434 ms, and hyperpolarized the maximal diastolic potential (MDP) from -67 to -70 mV. In voltage-clamp experiments, S-1-P (1 microM) activated a pertussis toxin-sensitive, inwardly-rectifying, time-independent K+ current (I(K,ACh)) that had a reversal potential of -88 mV (K+ equilibrium potential -86 mV). S-1-P (1 microM) had no measurable effect on the L-type Ca2+ current (I(Ca,L)) or the hyperpolarization-activated inward current (I(f)) under basal conditions. In the presence of the beta-adrenergic agonist, isoproterenol (ISO, 0.1 microM), S-1-P (1 microM) reversed the ISO-induced increase in pacing rate, hyperpolarized the MDP and decreased the ISO-induced enhancement of both I(Ca,L) (from 171 to 118% of control) and I(f) (from 211 to 135% of control). These results demonstrate that under basal conditions S-1-P can significantly slow spontaneous pacing in rabbit SA node cells mainly due to activation of a background, inwardly-rectifying K+ current. In the presence of ISO, S-1-P also slows the spontaneous pacing rate due to activation of the same K+ current, as well as inhibition of I(Ca,L) and I(f).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app