Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Lead field theoretical approach in bioimpedance measurements: towards more controlled measurement sensitivity.

This study was conducted to demonstrate the potentiality of lead field theoretical approach in analyzing bioimpedance (BI) measurements. Anatomically accurate computer models and the lead field theory were used to develop BI measurement configurations capable of detecting more localized BI changes in the human body. The methods were applied to assess the measurement properties of conventional impedance cardiography (ICG) and such BI measurement configurations as can be derived using (i) the 12-lead electrocardiography (ECG) and (ii) the international 10-20 electroencephalography (EEG) electrode systems. Information as to how various electrode configurations are sensitive to detecting conductivity changes in different tissues and organs was thus obtained. Theoretical results with the 12-lead system suggested that, compared to conventional ICGs, significantly more selective ICG configurations can be derived for cardiovascular structures. In addition to theoretical investigations, clinical test measurements were made with the 12-lead system to establish whether characteristic waveforms are available. Sensitivity distributions obtained with the 10-20 electrode system give promise of the possibility of monitoring noninvasively cerebrospinal fluid (CSF) impedance changes related to impending epileptic seizures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app