Add like
Add dislike
Add to saved papers

Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain.

Recent in vitro studies have shown that the periventricular subependymal zone (SEZ) of the rodent brain is capable of de novo generation of neurons and glia. There is less information available on neurogenesis in the adult human brain, and no study has shown the clonal generation of neurons and glia from in vitro-generated "neurospheres." Here we describe the isolation of proliferative stem/progenitor cells within neurospheres from two different regions, the SEZ and the hippocampus, from surgical biopsy specimens of adult (24-57 years) human brain. Using light and electron microscopy; immunocytochemistry for a variety of neuronal, glial, and developmental (including extracellular matrix; ECM) markers; and the reverse transcriptase polymerase chain reaction to demonstrate different gene transcripts found in neurospheres, it is shown that the adult human brain harbors a complex population of stem/progenitor cells that can generate neuronal and glial progeny under particular in vitro growth conditions. These methods also show that these neurospheres contain both neurons and glia and demonstrate regional similarities at the mRNA level, indicating common stem/progenitor cell types within two different neurogenic regions of the adult human brain. In addition to the synthesis of developmentally regulated molecules such as the ECM protein tenascin-C, a variety of other genes (e.g., Pax 6) and proteins (e.g. , Bcl-2) involved in cell survival and differentiation are expressed by adult human brain neurospheres.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app