Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Mitochondrial superoxide decreases yeast survival in stationary phase.

Yeast lacking mitochondrial superoxide dismutase (MnSOD) display shortened stationary-phase survival and provide a good model system for studying mitochondrial oxidative damage. We observed a marked decrease in respiratory function preceding stationary-phase death of yeast lacking MnSOD (sod2Delta). Agents (mitochondrial inhibitors) that are known to increase or decrease superoxide production in submitochondrial particles affected stationary-phase survival in a manner inversely correlated with their effects on superoxide production, implicating superoxide in this mitochondrial disfunction. Similar but less-dramatic effects were observed in wild-type yeast. The activities of certain mitochondrial enzymes were particularly affected. In sod2Delta yeast the activity of aconitase, a 4Fe-4S-cluster-containing enzyme located in the matrix, was greatly and progressively decreased as the cells established stationary phase. Succinate dehydrogenase activity also decreased in MnSOD mutants; cytochrome oxidase and ATPase activities did not. Aconitase could be reactivated by addition of materials required for cluster assembly (Fe3+ and a sulfur source), both in extracts and in vivo, indicating that inactivation of the enzyme was by disassembly of the cluster. Our results support the conclusion that superoxide is generated in the mitochondria in vivo and under physiological conditions and that MnSOD is the primary defense against this toxicity. When the balance between superoxide generation and MnSOD activity is disrupted, superoxide mediates iron release from mitochondrial iron-sulfur clusters, leading first to loss of mitochondrial function and then to death, independently of mtDNA damage. These results raise the possibility that similar processes may occur in higher eukaryotes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app