Add like
Add dislike
Add to saved papers

Morphological and functional alterations of human erythrocytes induced by SiO2 particles: An electron microscopy and dielectric spectroscopy study.

The interaction of aerosil particles with human erythrocytes was investigated by electron microscopy methods complemented with hemolysis and radio wave dielectric spectroscopy to elucidate the extent of morphological and functional modification induced by aerosil surface. Scanning electron microscopy and freeze-fracturing techniques were used to follow morphological and ultrastructural modifications and hemolysis tests and radio wave dielectric spectroscopy to monitor the membrane damage. All experimental results indicate that there is an effect depending on both silica concentration and incubation time. Our results are in good agreement with an interaction model based on membrane protein denaturation due to the electrostatic attraction between (-SiO-) groups at the silica surface and proteins embedded in the membrane. The process is time-limited and reaches saturation after about 20 min. The extent of the damage is determined mainly by the ratio between cell and aerosil surface, that is, aerosil concentration. Limited damage is observed, especially when little aerosil surface per cell is available. Conversely, strong membrane damage is obtained when aerosil surface is considerable. In any case, due to the high surface/volume of aerosil particles used in our experiments we obtained considerable membrane damage with small weight concentrations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app