COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Use of endothelial cells containing superparamagnetic microspheres to improve endothelial cell delivery to arterial surfaces after angioplasty.

PURPOSE: The purpose of this study was to determine if the luminal surface of balloon-dilated arteries can be re-endothelialized circumferentially with use of normal endothelial cells (ECs) and superparamagnetic microsphere-containing endothelial cells (MagECs) to cover gravity-dependent and independent arterial surfaces, respectively.

MATERIALS AND METHODS: MagECs were obtained after phagocytosis of albumin-coated superparamagnetic polystyrene microspheres by rabbit microvascular ECs. The effect of microsphere internalization on cell adhesion was determined in vitro by comparing ECs and MagECs in terms of time courses of adhesion to fibronectin and cell retention after exposure to a shear stress. In vivo re-endothelialization was performed by delivering fluorescently labeled ECs and MagECs to a balloon-dilated artery with a double-balloon catheter, placing a magnet over the artery, and rotating the rabbit axially. Endoluminal coverage of arterial cross-sections was estimated by epifluorescence microscopy.

RESULTS: Under the influence of gravity, in vitro cell adhesion to fibronectin after 5, 10, and 15 minutes was similar for the ECs (34%, 74%, and 70%) and MagECs (40%, 56%, and 93%). In vitro cell retention after exposure to a shear stress (25 dynes/cm2) was greater (P < .05) for ECs than for MagECs (82% vs 69%). Use of ECs plus MagECs in vivo resulted in cell delivery that was nearly circumferential.

CONCLUSIONS: Delivery of a mixture of ECs and MagECs in combination with animal rotation and a magnetic field provide nearly circumferential delivery of ECs to the luminal surface of balloon-dilated arteries. The presence of superparamagnetic microspheres in cells does not impede cell adhesion but does decrease cell retention after exposure to a fluid shear.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app