Read by QxMD icon Read


Nikolas C Vann, Francis D Pham, John A Hayes, Andrew Kottick, Christopher A Del Negro
Interneurons derived from Dbx1-expressing precursors located in the brainstem preBötzinger complex (preBötC) putatively form the core oscillator for inspiratory breathing movements. We tested this Dbx1 core hypothesis by expressing archaerhodopsin in Dbx1-derived interneurons and then transiently hyperpolarizing these neurons while measuring respiratory rhythm in vitro or breathing in vagus-intact adult mice. Transient illumination of the preBötC interrupted inspiratory rhythm in both slice preparations and sedated mice...
2016: PloS One
Gaspard Montandon, Hattie Liu, Richard L Horner
Breathing is generated by a respiratory network in the brainstem. At its core, a population of neurons expressing neurokinin-1 receptors (NK1R) and the peptide somatostatin (SST) form the preBötzinger Complex (preBötC), a site essential for the generation of breathing. PreBötC interneurons generate rhythm and follower neurons shape motor outputs by activating upper airway respiratory muscles. Since NK1R-expressing preBötC neurons are preferentially inhibited by μ-opioid receptors via activation of GIRK channels, NK1R stimulation may also involve GIRK channels...
2016: Scientific Reports
Yan Cui, Kaiwen Kam, David Sherman, Wiktor A Janczewski, Yu Zheng, Jack L Feldman
Normal breathing in rodents requires activity of glutamatergic Dbx1-derived (Dbx1(+)) preBötzinger Complex (preBötC) neurons expressing somatostatin (SST). We combined in vivo optogenetic and pharmacological perturbations to elucidate the functional roles of these neurons in breathing. In transgenic adult mice expressing channelrhodopsin (ChR2) in Dbx1(+) neurons, photoresponsive preBötC neurons had preinspiratory or inspiratory firing patterns associated with excitatory effects on burst timing and pattern...
August 3, 2016: Neuron
K Tree, J C Viemari, F Cayetanot, J Peyronnet
Impaired transplacental supply of oxygen leads to intrauterine growth restriction, one of the most important causes of perinatal mortality and respiratory morbidity. Breathing rhythm depends on the central respiratory network modulated by catecholamines. We investigated the impact of growth restriction, using prenatal hypoxia, on respiratory frequency, on central respiratory-like rhythm, and on its catecholaminergic modulation after birth. At birth, respiratory frequency was increased and confirmed in en bloc medullary preparations, where the frequency of the fourth cervical (C4) ventral root discharge was increased, and in slice preparations containing the pre-Bötzinger complex with an increased inspiratory rhythm...
October 1, 2016: Journal of Neurophysiology
Tatiana M Anderson, Alfredo J Garcia, Nathan A Baertsch, Julia Pollak, Jacob C Bloom, Aguan D Wei, Karan G Rai, Jan-Marino Ramirez
Breathing must be tightly coordinated with other behaviours such as vocalization, swallowing, and coughing. These behaviours occur after inspiration, during a respiratory phase termed postinspiration. Failure to coordinate postinspiration with inspiration can result in aspiration pneumonia, the leading cause of death in Alzheimer's disease, Parkinson's disease, dementia, and other neurodegenerative diseases. Here we describe an excitatory network that generates the neuronal correlate of postinspiratory activity in mice...
August 4, 2016: Nature
J Muñoz-Ortiz, E Muñoz-Ortiz, M L López-Meraz, L Beltran-Parrazal, C Morgado-Valle
INTRODUCTION: In mammals, the preBötzinger complex (preBötC) is a bilateral and symmetrical neural network located in the brainstem which is essential for the generation and modulation of respiratory rhythm. There are few human studies about the preBötC and, its relationship with neurological diseases has not been described. However, the importance of the preBötC in neural control of breathing and its potential participation in neurological diseases in humans, has been suggested based on pharmacological manipulation and lesion of the preBötC in animal models, both in vivo and in vitro...
July 18, 2016: Neurología: Publicación Oficial de la Sociedad Española de Neurología
Marc Chevalier, Natalia Toporikova, John Simmers, Muriel Thoby-Brisson
Breathing is a vital rhythmic behavior generated by hindbrain neuronal circuitry, including the preBötzinger complex network (preBötC) that controls inspiration. The emergence of preBötC network activity during prenatal development has been described, but little is known regarding inspiratory neurons expressing pacemaker properties at embryonic stages. Here, we combined calcium imaging and electrophysiological recordings in mouse embryo brainstem slices together with computational modeling to reveal the existence of heterogeneous pacemaker oscillatory properties relying on distinct combinations of burst-generating INaP and ICAN conductances...
2016: ELife
Hanbing Song, John A Hayes, Nikolas C Vann, Xueying Wang, M Drew LaMar, Christopher A Del Negro
UNLABELLED: Breathing in mammals depends on rhythms that originate from the preBötzinger complex (preBötC) of the ventral medulla and a network of brainstem and spinal premotor neurons. The rhythm-generating core of the preBötC, as well as some premotor circuits, consist of interneurons derived from Dbx1-expressing precursors (Dbx1 neurons), but the structure and function of these networks remain incompletely understood. We previously developed a cell-specific detection and laser ablation system to interrogate respiratory network structure and function in a slice model of breathing that retains the preBötC, the respiratory-related hypoglossal (XII) motor nucleus and XII premotor circuits...
July 6, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
David Forsberg, Zachi Horn, Evangelia Tserga, Erik Smedler, Gilad Silberberg, Yuri Shvarev, Kai Kaila, Per Uhlén, Eric Herlenius
Inflammation-induced release of prostaglandin E2 (PGE2) changes breathing patterns and the response to CO2 levels. This may have fatal consequences in newborn babies and result in sudden infant death. To elucidate the underlying mechanisms, we present a novel breathing brainstem organotypic culture that generates rhythmic neural network and motor activity for 3 weeks. We show that increased CO2 elicits a gap junction-dependent release of PGE2. This alters neural network activity in the preBötzinger rhythm-generating complex and in the chemosensitive brainstem respiratory regions, thereby increasing sigh frequency and the depth of inspiration...
2016: ELife
Robert Tr Huckstepp, Lauren E Henderson, Kathryn P Cardoza, Jack L Feldman
Breathing in mammals is hypothesized to result from the interaction of two distinct oscillators: the preBötzinger Complex (preBötC) driving inspiration and the lateral parafacial region (pFL) driving active expiration. To understand the interactions between these oscillators, we independently altered their excitability in spontaneously breathing vagotomized urethane-anesthetized adult rats. Hyperpolarizing preBötC neurons decreased inspiratory activity and initiated active expiration, ultimately progressing to apnea, i...
2016: ELife
Marc Chevalier, Rafaël De Sa, Laura Cardoit, Muriel Thoby-Brisson
Breathing is a rhythmic behavior that requires organized contractions of respiratory effector muscles. This behavior must adapt to constantly changing conditions in order to ensure homeostasis, proper body oxygenation, and CO2/pH regulation. Respiratory rhythmogenesis is controlled by neural networks located in the brainstem. One area considered to be essential for generating the inspiratory phase of the respiratory rhythm is the preBötzinger complex (preBötC). Rhythmogenesis emerges from this network through the interplay between the activation of intrinsic cellular properties (pacemaker properties) and intercellular synaptic connections...
2016: Neural Plasticity
Ann L Revill, Nikolas C Vann, Victoria T Akins, Andrew Kottick, Paul A Gray, Christopher A Del Negro, Gregory D Funk
All behaviors require coordinated activation of motoneurons from central command and premotor networks. The genetic identities of premotoneurons providing behaviorally relevant excitation to any pool of respiratory motoneurons remain unknown. Recently, we established in vitro that Dbx1-derived pre-Bötzinger complex neurons are critical for rhythm generation and that a subpopulation serves a premotor function (Wang et al., 2014). Here, we further show that a subpopulation of Dbx1-derived intermediate reticular (IRt) neurons are rhythmically active during inspiration and project to the hypoglossal (XII) nucleus that contains motoneurons important for maintaining airway patency...
2015: ELife
Jonathan-Julio Lorea-Hernández, Teresa Morales, Ana-Julia Rivera-Angulo, David Alcantara-Gonzalez, Fernando Peña-Ortega
Inflammation has been linked to the induction of apneas and Sudden Infant Death Syndrome, whereas proinflammatory mediators inhibit breathing when applied peripherally or directly into the CNS. Considering that peripheral inflammation can activate microglia in the CNS and that this cell type can directly release all proinflammatory mediators that modulate breathing, it is likely that microglia can modulate breathing generation. It might do so also in hypoxia, since microglia are sensitive to hypoxia, and peripheral proinflammatory conditions affect gasping generation and autoresuscitation...
April 2016: Glia
Wiktor S Phillips, Mikkel Herly, Christopher A Del Negro, Jens C Rekling
Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7-43 days in vitro...
February 1, 2016: Journal of Neurophysiology
Sheng Le, Anita J Turner, Lindsay M Parker, Peter G Burke, Natasha N Kumar, Ann K Goodchild, Simon McMullan
Microinjection of somatostatin (SST) causes site-specific effects on respiratory phase transition, frequency, and amplitude when microinjected into the ventrolateral medulla (VLM) of the anesthetized rat, suggesting selective expression of SST receptors on different functional classes of respiratory neurons. Of the six subtypes of SST receptor, somatostatin 2a (sst2a ) is the most prevalent in the VLM, and other investigators have suggested that glutamatergic neurons in the preBötzinger Complex (preBötC) that coexpress neurokinin-1 receptor (NK1R), SST, and sst2a are critical for the generation of respiratory rhythm...
May 1, 2016: Journal of Comparative Neurology
Hanbing Song, John A Hayes, Nikolas C Vann, M Drew LaMar, Christopher A Del Negro
The mammalian breathing rhythm putatively originates from Dbx1-derived interneurons in the preBötzinger complex (preBötC) of the ventral medulla. Cumulative deletion of ∼15% of Dbx1 preBötC neurons in an in vitro breathing model stops rhythmic bursts of respiratory-related motor output. Here we assemble in silico models of preBötC networks using random graphs for structure, and ordinary differential equations for dynamics, to examine the mechanisms responsible for the loss of spontaneous respiratory rhythm and motor output measured experimentally in vitro...
July 2015: ENeuro
Andrew Kottick, Christopher A Del Negro
UNLABELLED: The brainstem preBötzinger complex (preBötC) generates the rhythm underlying inspiratory breathing movements and its core interneurons are derived from Dbx1-expressing precursors. Recurrent synaptic excitation is required to initiate inspiratory bursts, but whether excitatory synaptic mechanisms also contribute to inspiratory-expiratory phase transition is unknown. Here, we examined the role of short-term synaptic depression using a rhythmically active neonatal mouse brainstem slice preparation...
August 19, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Claire Guerrier, John A Hayes, Gilles Fortin, David Holcman
How might synaptic dynamics generate synchronous oscillations in neuronal networks? We address this question in the preBötzinger complex (preBötC), a brainstem neural network that paces robust, yet labile, inspiration in mammals. The preBötC is composed of a few hundred neurons that alternate bursting activity with silent periods, but the mechanism underlying this vital rhythm remains elusive. Using a computational approach to model a randomly connected neuronal network that relies on short-term synaptic facilitation (SF) and depression (SD), we show that synaptic fluctuations can initiate population activities through recurrent excitation...
August 4, 2015: Proceedings of the National Academy of Sciences of the United States of America
Stuti J Jaiswal, Lila Buls Wollman, Caitlyn M Harrison, Jason Q Pilarski, Ralph F Fregosi
Nicotine exposure in utero negatively affects neuronal growth, differentiation, and synaptogenesis. We used rhythmic brainstems slices and immunohistochemistry to determine how developmental nicotine exposure (DNE) alters inhibitory neurotransmission in two regions essential to normal breathing, the hypoglossal motor nucleus (XIIn), and preBötzinger complex (preBötC). We microinjected glycine or muscimol (GABAA agonist) into the XIIn or preBötC of rhythmic brainstem slices from neonatal rats while recording from XII nerve roots to obtain XII motoneuron population activity...
March 2016: Developmental Neurobiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"