Read by QxMD icon Read


Chih-Ming Lin, I-Jui Hsu, Sin-Cheng Lin, Yu-Chun Chuang, Wei-Ting Chen, Yen-Fa Liao, Jenh-Yih Juang
The evolution of iron local vibrational mode (Fe LVM) and phase transitions in n-type iron-doped indium phosphide (InP:Fe) were investigated at ambient temperature. In-situ angle-dispersive X-ray diffraction measurements revealed that InP:Fe starts to transform from zinc-blende (ZB) to rock-salt (RS) structure around 8.2(2) GPa and completes around 16.0(2) GPa. The Raman shift of both transverse and longitudinal optical modes increases monotonically with increasing pressure, while their intensities become indiscernible at 11...
January 19, 2018: Scientific Reports
Dayanand Kumar, Rakesh Aluguri, Umesh Chand, Tseung-Yuen Tseng
In this work, the transparent bipolar resistive switching characteristics of SiCN-based ITO/SiCN/AZO structure due to In diffusion from ITO was studied. SiCN based device is found to be 80 % transparent in the visible wavelength region. This device with AZO as both top and bottom electrodes did not show any RRAM property due to deposition of the high quality O2 free SiCN film. Replacing the AZO top electrode with ITO in this device exhibited good resistive switching(RS) characteristics with high on/off ratio and long retention...
January 19, 2018: Nanotechnology
Stefan Pilz, David Geissler, Mariana Calin, Jürgen Eckert, Martina Zimmermann, Jens Freudenberger, Annett Gebert
In this study, the effect of thermomechanical processing on microstructure evolution of the indium-containing β-type Ti alloys (Ti-40Nb)-3.5In and (Ti-36Nb)-3.5In was examined. Both alloys show an increased β-phase stability compared to binary alloys due to In additions. This leads to a reduced α''-phase fraction in the solution treated and recrystallized state in the case of (Ti-36Nb)-3.5In and to the suppression of stress-induced α'' formation and deformation twinning for (Ti-40Nb)-3.5In. The mechanical properties of the alloys were subsequently studied by quasistatic tensile tests in the recrystallized state, revealing reduced Young's modulus values of 58GPa ((Ti-40Nb)-3...
December 29, 2017: Journal of the Mechanical Behavior of Biomedical Materials
Rajratan Basu, Samuel A Shalov
In a conventional liquid crystal (LC) cell, polyimide layers are used to align the LC homogeneously in the cell, and transmissive indium tin oxide (ITO) electrodes are used to apply the electric field to reorient the LC along the field. It is experimentally presented here that monolayer graphene films on the two glass substrates can function concurrently as the LC aligning layers and the transparent electrodes to fabricate an LC cell, without using the conventional polyimide and ITO substrates. This replacement can effectively decrease the thickness of all the alignment layers and electrodes from about 100 nm to less than 1 nm...
July 2017: Physical Review. E
Prabhakarn Arunachalam, Maged N Shaddad, Mohamed A Ghanem, Abdullah M Al-Mayouf, Mark T Weller
Photoanodes fabricated by the electrophoretic deposition of a thermally prepared zinc tantalum oxynitride (ZnTaO₂N) catalyst onto indium tin oxide (ITO) substrates show photoactivation for the oxygen evolution reaction (OER) in alkaline solutions. The photoactivity of the OER is further boosted by the photodeposition of cobalt phosphate (CoPi) layers onto the surface of the ZnTaO₂N photoanodes. Structural, morphological, and photoelectrochemical (PEC) properties of the modified ZnTaO₂N photoanodes are studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet visible (UV-Vis) diffuse reflectance spectroscopy, and electrochemical techniques...
January 18, 2018: Nanomaterials
Ying Zhang, Chengliang Yang, Bin Xue, Zenghui Peng, Zhaoliang Cao, Quanquan Mu, Li Xuan
We demonstrated flower-like 3D Ag-Au hetero-nanostructures on an indium tin oxide glass (ITO glass) for surface enhanced Raman scattering (SERS) applications. The flower-like 3D Ag nanostructures were obtained through electrodeposition with liquid crystalline soft template which is simple, controllable and cost effective. The flower-like 3D Ag-Au hetero-nanostructures were further fabricated by galvanic replacement reaction of gold (III) chloride trihydrate (HAuCl4·3H2O) solution and flower-like Ag. The flower-like Ag-Au hetero-nanostructure exhibited stronger SERS effects and better chemical stability compared with flower-like Ag nanostructure...
January 17, 2018: Scientific Reports
Jong Baek Park, Mehmet Isik, Hea Jung Park, In Hwan Jung, David Mecerreyes, Do-Hoon Hwang
Interfacial layers play a critical role in building up the ohmic contact between the electrodes and functional layers in organic photovoltaic solar cells. These layers are based on either inorganic oxides (ZnO, TiO2) or water-soluble organic polymers such as poly[(9,9-dioctyl-2,7-fluorene)-alt-(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)] (PFN) and polyethylenimine ethoxylated (PEIE). In this work, we have developed a series of novel poly(ionic liquid) non-conjugated block copolymers for improving the performance of inverted organic photovoltaic cells (OPVs) by acting as work function modifiers of indium tin oxide (ITO) cathode...
January 17, 2018: ACS Applied Materials & Interfaces
Puja Pradhan, Puruswottam Aryal, Dinesh Attygalle, Abdel-Rahman Ibdah, Prakash Koirala, Jian Li, Khagendra P Bhandari, Geethika K Liyanage, Randy J Ellingson, Michael J Heben, Sylvain Marsillac, Robert W Collins, Nikolas J Podraza
Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1-xGax)₂Se₃ (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell...
January 16, 2018: Materials
Anne E Wyman, Stella E Hines
PURPOSE OF REVIEW: Occupational and environmental exposures to metals can result in multiple pulmonary conditions. This article will review recent epidemiologic and mechanistic studies that have enhanced our understanding of the association between particular lung diseases and exposure to specific metals. RECENT FINDINGS: Recent studies have broadened our understanding of the mechanisms of lung diseases such as CBD in established industries and drawn attention to conditions that may arise from exposure to metals such as indium in developing technologies...
January 13, 2018: Current Opinion in Allergy and Clinical Immunology
G Wille, C Lerouge, U Schmidt
In cassiterite, tin is associated with metals (titanium, niobium, tantalum, indium, tungsten, iron, manganese, mercury). Knowledge of mineral chemistry and trace-element distribution is essential for: the understanding of ore formation, the exploration phase, the feasibility of ore treatment, and disposal/treatment of tailings after the exploitation phase. However, the availability of analytical methods make these characterisations difficult. We present a multitechnical approach to chemical and structural data that includes scanning electron microscopy (SEM)-based imaging and microanalysis techniques such as: secondary and backscattered electrons, cathodoluminescence (CL), electron probe microanalyser (EPMA), electron backscattered diffraction (EBSD) and confocal Raman-imaging integrated in a SEM (RISE)...
January 16, 2018: Journal of Microscopy
Il-Hoon Cho, Jongsung Lee, Jiyeon Kim, Min-Soo Kang, Jean Kyung Paik, Seockmo Ku, Hyun-Mo Cho, Joseph Irudayaraj, Dong-Hyung Kim
An electrochemical immunosensor employs antibodies as capture and detection means to produce electrical charges for the quantitative analysis of target molecules. This sensor type can be utilized as a miniaturized device for the detection of point-of-care testing (POCT). Achieving high-performance analysis regarding sensitivity has been one of the key issues with developing this type of biosensor system. Many modern nanotechnology efforts allowed for the development of innovative electrochemical biosensors with high sensitivity by employing various nanomaterials that facilitate the electron transfer and carrying capacity of signal tracers in combination with surface modification and bioconjugation techniques...
January 12, 2018: Sensors
Debarghya Sarkar, Jun Tao, Wei Wang, Qingfeng Lin, Matthew Yeung, Chenhao Ren, Rehan Kapadia
Neuromorphic or "brain-like" computation is a leading candidate for efficient, fault-tolerant processing of large-scale data, as well as real-time sensing and transduction of complex multivariate systems and networks such as self-driving vehicles or Internet of Things applications. In biology, the synapse serves as an active memory unit in the neural system, and is the component responsible for learning and memory. Electronically emulating this element via a compact, scalable technology which can be integrated in a 3-D architecture is critical for future implementations of neuromorphic processors...
January 12, 2018: ACS Nano
Kun Zhou, Qiang Cheng, Jinlin Song, Lu Lu, Zhihao Jia, Junwei Li
We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely...
January 1, 2018: Applied Optics
Jong Sik Oh, Ji Soo Oh, Da In Sung, Geun Young Yeom
Graphene nanoplatelets (GNP) have attracted considerable attention due to their high yield and fabrication route that is scalable to enable graphene production. However, the absence of a means of fabricating a transparent and conductive GNP film has been the biggest obstacle to the replacement of pristine graphene. Here, we report on a novel means of fabricating uniform and thin GNP-based high-performance transparent electrodes for flexible and stretchable optoelectronic devices involving the use of an adhesive polymer layer (PMMA) as a GNP layer controller and by forming a hybrid GNP/AgNW electrode embedded on PET or PDMS...
January 12, 2018: Nanoscale
Kunpeng Li, Junyan Xiao, Xinxin Yu, Tianhui Li, Da Xiao, Jiang He, Peng Zhou, Yangwen Zhang, Wangnan Li, Zhiliang Ku, Jie Zhong, Fuzhi Huang, Yong Peng, Yibing Cheng
Large-area, pinhole-free CH3NH3PbI3 perovskite thin films were successfully fabricated on 5 cm × 5 cm flexible indium tin oxide coated polyethylene naphthalate (ITO-PEN) substrates through a sequential evaporation/spin-coating deposition method in this research. The influence of the rate-controlled evaporation of PbI2 films on the quality of the perovskite layer and the final performance of the planar-structured perovskite solar cells were investigated. An ultrafast evaporation rate of 20 Å s-1 was found to be most beneficial for the conversion of PbI2 to CH3NH3PbI3 perovskite...
January 11, 2018: Scientific Reports
Su Min Jung, Han Lim Kang, Jong Kook Won, Jae Hyun Kim, Cha Hwan Hwang, Kyunghan Ahn, In Chung, Byeong-Kwon Ju, Myung-Gil Kim, Sung Kyu Park
The recent development of high performance colloidal quantum dot (QD) thin-film transistor (TFT) has been achieved with removal of surface ligand, defect passivation, and facile electronic doping. Here, we report on high performance solution-processed CdSe QD TFTs with an optimized surface functionalization and robust defect passivation via hydrazine-free metal chalcogenide (MCC) ligands. The underlying mechanism of the ligand effects on CdSe QDs has been studied with hydrazine-free ex-situ reaction derived MCC ligands, such as Sn2S64-, Sn2Se64- and In2Se42-, allowing benign solution-process available...
January 11, 2018: ACS Applied Materials & Interfaces
G E Gomez, R F D'vries, D F Lionello, L M Aguirre-Díaz, M Spinosa, C S Costa, M C Fuertes, R A Pizarro, A M Kaczmarek, J Ellena, L Rozes, M Iglesias, R Van Deun, C Sanchez, M A Monge, G J A A Soler-Illia
Main group element coordination polymers (MGE-CPs) are important compounds for the development of multifunctional materials. However, there has been a shortage of studies regarding their structural, optical, catalytic, mechanical, and antibacterial properties. This work presents an exhaustive study of a set of crystalline MGE-CPs obtained from bismuth and indium metals and iminodiacetate, 1,2,4,5-benzenetetracarboxylate, and 2,2'-bipyridine as building blocks. An in-depth topological analysis of the networks was carried out...
January 11, 2018: Dalton Transactions: An International Journal of Inorganic Chemistry
Dongdong Li, Wen-Yong Lai, Yi-Zhou Zhang, Wei Huang
Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention...
January 10, 2018: Advanced Materials
Qian Ma, He-Mei Zheng, Yan Shao, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding, David Wei Zhang
Atomic-layer-deposition (ALD) of In2O3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H2O2) as precursors. The In2O3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (Eg) of the deposited film rises from 3...
January 9, 2018: Nanoscale Research Letters
Robin Babu, Jintu Francis Kurisingal, Jong-San Chang, Dae-Won Park
A pyridinium-based ionic liquid-decorated 1D MOF (IL-[In2(dpa)3(1,10-phen)2]) was developed as a bifunctional heterogeneous catalyst system for CO2-oxirane coupling reactions. An aqueous-microwave route was employed as competent with the hydrothermal pathway for the synthesis of [In2(dpa)3(1,10-phen)2] MOF, and the IL-[In2(dpa)3(1,10-phen)2] catalyst was synthesized using the covalent post functionalization method. Due to the synergetic effect of dual functional sites, including Lewis acid sites (coordinatively unsaturated indium sites) and I- ion in IL functional sites, IL-[In2(dpa)3(1,10-phen)2] displayed high catalytic activity for CO2-epoxide cycloaddition reactions under mild and solvent free conditions...
January 6, 2018: ChemSusChem
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"