Read by QxMD icon Read

amyloid beta UPR

Teresa Niccoli, Melissa Cabecinha, Anna Tillmann, Fiona Kerr, Chi T Wong, Dalia Cardenes, Alec J Vincent, Lucia Bettedi, Li Li, Sebastian Grönke, Jacqueline Dols, Linda Partridge
Glucose hypometabolism is a prominent feature of the brains of patients with Alzheimer's disease (AD). Disease progression is associated with a reduction in glucose transporters in both neurons and endothelial cells of the blood-brain barrier. However, whether increasing glucose transport into either of these cell types offers therapeutic potential remains unknown. Using an adult-onset Drosophila model of Aβ (amyloid beta) toxicity, we show that genetic overexpression of a glucose transporter, specifically in neurons, rescues lifespan, behavioral phenotypes, and neuronal morphology...
September 12, 2016: Current Biology: CB
Fariba Khodagholi, Hadi Digaleh, Fereshteh Motamedi, Forough Foolad, Fatemeh Shaerzadeh
Several pathways involved in regulation of intracellular protein integrity are known as the protein quality control (PQC) system. Molecular chaperones as the main players are engaged in various aspects of PQC system. According to the importance of these proteins in cell survival, in the present study, we traced endoplasmic reticulum-specific markers and chaperone-mediated autophagy (CMA)-associated factors as two main arms of PQC system in intra-hippocampal amyloid beta (Aβ)-injected rats during 10 days running...
August 2016: Cellular and Molecular Neurobiology
Charlotte Regitz, Elena Fitzenberger, Friederike Luise Mahn, Lisa Marie Dußling, Uwe Wenzel
PURPOSE: Resveratrol is a polyphenol present in red wine for which the capability of directly interfering with the hallmark of Alzheimer's disease (AD), i.e. toxic β-amyloid protein (Aβ) aggregation, has been shown recently. Since the stimulation of proteostasis could explain reduced Aβ-aggregation, we searched for proteostasis targets of resveratrol. METHODS: The transgenic Caenorhabditis elegans strain CL2006, expressing Aβ1-42 under control of a muscle-specific promoter and responding to Aβ-toxicity with paralysis, was used as a model...
March 2016: European Journal of Nutrition
Manuel Torres, Amaia Marcilla-Etxenike, Maria A Fiol-deRoque, Pablo V Escribá, Xavier Busquets
The unfolded protein response (UPR) and autophagy are two cellular processes involved in the clearing of intracellular misfolded proteins. Both pathways are targets for molecules that may serve as treatments for several diseases, including neurodegenerative disorders like Alzheimer's disease (AD). In the present work, we show that 2-hydroxy-DHA (HDHA), a docosahexaenoic acid (DHA) derivate that restores cognitive function in a transgenic mouse model of AD, modulates UPR and autophagy in differentiated neuron-like SH-SY5Y cells...
May 2015: Apoptosis: An International Journal on Programmed Cell Death
M Del Campo, C R Oliveira, W Scheper, R Zwart, C Korth, A Müller-Schiffmann, G Kostallas, H Biverstal, J Presto, J Johansson, J J Hoozemans, C F Pereira, C E Teunissen
Alzheimer's disease (AD) is pathologically characterized by the presence of misfolded proteins such as amyloid beta (Aβ) in senile plaques, and hyperphosphorylated tau and truncated tau in neurofibrillary tangles (NFT). The BRI2 protein inhibits Aβ aggregation via its BRICHOS domain and regulates critical proteins involved in initiating the amyloid cascade, which has been hypothesized to be central in AD pathogenesis. We recently detected the deposition of BRI2 ectodomain associated with Aβ plaques and concomitant changes in its processing enzymes in early stages of AD...
April 2015: Cellular and Molecular Life Sciences: CMLS
Han-Chang Huang, Di Tang, Shu-Yan Lu, Zhao-Feng Jiang
Alzheimer's disease (AD) is one of the most common types of progressive dementias. The typical neuropathological changes in AD include extracellular senile plaques, intracellular neurofibrillary tangles, and loss of neurons. The pathogenetic mechanism of this disease is not comprehensively understood yet. Recently, endoplasmic reticulum stress (ER stress) has been considered as a potential event involved in AD development. Some AD-related factors, such as misfolded protein and Ca(2+) depletion, could disrupt the homeostasis of ER lumen...
April 2015: Neurological Research
Christoph Köhler, Maja Dinekov, Jürgen Götz
Histopathological studies on the brains of tauopathy cases including cases with Alzheimer's disease (AD) demonstrate that neurons with hyperphosphorylated protein tau display granulovacuolar degeneration (GVD), as evidenced by vacuolar lesions harboring a central granule, together with markers of the activated unfolded protein response (UPR). In order to examine whether this hallmark is reproduced in animal models we studied the presence of GVD and the activated UPR in two complementary mouse models, pR5 mice with a tau pathology and APPSLxPS1mut mice with an amyloid plaque pathology...
November 2014: Neurobiology of Disease
Ying Xiong, Jie Zhang, Man Liu, Mingwei An, Ling Lei, Wuhua Guo
Current treatment modalities for various types of hepatic cancer, which has an increasing incidence rate, are inadequate and novel therapies are required. Therefore, identifying targets for liver cancer is becoming increasingly valuable to develop novel methods for therapy. The aim of the present study was to examine the growth activation mechanism of the leptin protein in the liver cancer cell line HepG2. The effects of the leptin protein on cell death were investigated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide analysis...
September 2014: Molecular Medicine Reports
Lisa Cadavez, Joel Montane, Gema Alcarraz-Vizán, Montse Visa, Laia Vidal-Fàbrega, Joan-Marc Servitja, Anna Novials
In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP). The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR), perturbing endoplasmic reticulum (ER) homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression...
2014: PloS One
A I Plácido, C M F Pereira, A I Duarte, E Candeias, S C Correia, R X Santos, C Carvalho, S Cardoso, C R Oliveira, P I Moreira
The endoplasmic reticulum (ER) is the principal organelle responsible for the proper folding/processing of nascent proteins and perturbed ER function leads to a state known as ER stress. Mammalian cells try to overcome ER stress through a set of protein signaling pathways and transcription factors termed the unfolded protein response (UPR). However, under unresolvable ER stress conditions, the UPR is hyperactivated inducing cell dysfunction and death. The accumulation of misfolded proteins in the brain of Alzheimer's disease (AD) patients suggests that alterations in ER homeostasis might be implicated in the neurodegenerative events that characterize this disorder...
September 2014: Biochimica et Biophysica Acta
Ana Catarina Fonseca, Catarina R Oliveira, Cláudia F Pereira, Sandra M Cardoso
Abnormal accumulation of amyloid-β (Aβ) peptide in the brain is a pathological hallmark of Alzheimer's disease (AD). In addition to neurotoxic effects, Aβ also damages brain endothelial cells (ECs) and may thus contribute to the degeneration of cerebral vasculature, which has been proposed as an early pathogenic event in the course of AD and is able to trigger and/or potentiate the neurodegenerative process and cognitive decline. However, the mechanisms underlying Aβ-induced endothelial dysfunction are not completely understood...
June 2014: Biochimica et Biophysica Acta
Kristina Endres, Sven Reinhardt
Pathogenic mechanisms of Alzheimer's disease (AD) are intensely investigated as it is the most common form of dementia and burdens society by its costs and social demands. While key molecules such as A-beta peptides and tau have been identified decades ago, it is still enigmatic what drives the disease in its sporadic manifestation. Synthesis of A-beta peptides as well as phosphorylation of tau proteins comprise normal cellular functions and occur in principle in the healthy as well as in dementia-affected persons...
2013: American Journal of Neurodegenerative Disease
Ana Catarina R G Fonseca, Elisabete Ferreiro, Catarina R Oliveira, Sandra M Cardoso, Cláudia F Pereira
Neurovascular dysfunction arising from endothelial cell damage is an early pathogenic event that contributes to the neurodegenerative process occurring in Alzheimer's disease (AD). Since the mechanisms underlying endothelial dysfunction are not fully elucidated, this study was aimed to explore the hypothesis that brain endothelial cell death is induced upon the sustained activation of the endoplasmic reticulum (ER) stress response by amyloid-beta (Aβ) peptide, which deposits in the cerebral vessels in many AD patients and transgenic mice...
December 2013: Biochimica et Biophysica Acta
Eun-Bum Kang, In-Su Kwon, Jung-Hoon Koo, Eung-Joon Kim, Chul-Hyun Kim, Jin Lee, Choon-Ho Yang, Young-Il Lee, In-Ho Cho, Joon-Yong Cho
Alzheimer's disease (AD) is characterized by the deposition of aggregated amyloid-beta (Aβ), which triggers a cellular stress response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of neuronal apoptosis and inflammation by Aβ-induced ER stress to exercise training are not fully understood...
November 2013: Apoptosis: An International Journal on Programmed Cell Death
Chun-Yan Wang, Jing-Wei Xie, Tao Wang, Ye Xu, Jian-Hui Cai, Xu Wang, Bao-Lu Zhao, Li An, Zhan-You Wang
BACKGROUND: Previous studies have demonstrated that endoplasmic reticulum (ER) stress is activated in Alzheimer's disease (AD) brains. ER stress-triggered unfolded protein response (UPR) leads to tau phosphorylation and neuronal death. AIMS: In this study, we tested the hypothesis that hypoxia-induced m-calpain activation is involved in ER stress-mediated AD pathogenesis. METHOD: We employed a hypoxic exposure in APP/PS1 transgenic mice and SH-SY5Y cells overexpressing human Swedish mutation APP (APPswe)...
October 2013: CNS Neuroscience & Therapeutics
Claudio Hetz
No abstract text is available yet for this article.
July 2013: Nature Reviews. Molecular Cell Biology
Víctor Hugo Cornejo, Claudio Hetz
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by synaptic dysfunction and accumulation of amyloid-beta (Aβ) peptide, which are responsible for the progressive loss of memory. The mechanisms involved in neuron dysfunction in AD remain poorly understood. Recent evidence implicates the participation of adaptive responses to stress within the endoplasmic reticulum (ER) in the disease process, via a pathway known as the unfolded protein response (UPR). Here, we review the findings suggesting a functional role of ER stress in the etiology of AD...
May 2013: Seminars in Immunopathology
Honghao Li, Qi Chen, Fuchen Liu, Xuemei Zhang, Wei Li, Shuping Liu, Yuying Zhao, Yaoqin Gong, Chuanzhu Yan
Although intracellular beta amyloid (Aβ) accumulation is known as an early upstream event in the degenerative course of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy, the process by which Aβdeposits initiate various degradative pathways, and their relationship have not been fully clarified. We studied the possible secondary responses after amyloid beta precursor protein (AβPP) deposition including unfolded protein response (UPR), ubiquitin proteasome system (UPS) activation and its correlation with autophagy system...
2013: PloS One
Rui O Costa, Elisabete Ferreiro, Catarina R Oliveira, Cláudia M F Pereira
Previously we reported that amyloid-β (Aβ) leads to endoplasmic reticulum (ER) stress in cultured cortical neurons and that ER-mitochondria Ca(2+) transfer is involved in Aβ-induced apoptotic neuronal cell death. In cybrid cells which recreate the defect in mitochondrial cytochrome c oxidase (COX) activity observed in platelets from Alzheimer's disease (AD) patients, we have shown that mitochondrial dysfunction affects the ER stress response triggered by Aβ. Here, we further investigated the impact of COX inhibition on Aβ-induced ER dysfunction using a neuronal model...
January 2013: Molecular and Cellular Neurosciences
Elisabete Ferreiro, Cláudia M F Pereira
The accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER) activates the unfolded protein response (UPR), which involves a set of protein signalling pathways and transcription factors that re-establish homeostasis and normal ER function, adapting cells to ER stress. If this adaptive response is insufficient, the UPR triggers an apoptotic program to eliminate irreversibly damaged cells. Recent observations suggest that ER stress plays an important role in the pathogenesis of various neurodegenerative disorders such as Alzheimer's disease, which is characterized by the deposition of amyloid-beta (Aβ) and hyperphosphorylated tau in susceptible brain regions...
April 2012: Journal of Pathology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"