keyword
MENU ▼
Read by QxMD icon Read
search

Gene edition

keyword
https://www.readbyqxmd.com/read/27910966/stem-cell-and-regenerative-medicine-global-conference-scrgc-2016-august-23-24-2016-gyeonggi-do-korea
#1
A Vertès
In its third edition, the Stem Cell and Regenerative Medicine Global Conference (SCRGC) organized by the Global Stem Cell & Regenerative Medicine Acceleration Center (GSRAC) was focused on breaking barriers to accelerate the pace of innovation and development of the regenerative medicine industry. GSRAC is both a think tank and a global network of key opinion leaders from the public and the private sectors. GSRAC was commissioned in 2011 by the Ministry of Health and Welfare (MOHW) of Korea. GSRAC's primary mission is to enable and accelerate the delivery of innovative technologies to patients who are affected by currently untreatable diseases...
October 2016: Drugs of Today
https://www.readbyqxmd.com/read/27910851/crispr-cas9-mediated-multiplex-gene-editing-in-car-t-cells
#2
Xiaojuan Liu, Yongping Zhang, Chen Cheng, Albert W Cheng, Xingying Zhang, Na Li, Changqing Xia, Xiaofei Wei, Xiang Liu, Haoyi Wang
No abstract text is available yet for this article.
December 2, 2016: Cell Research
https://www.readbyqxmd.com/read/27910002/the-rice-pentatricopeptide-repeat-gene-tcd10-is-needed-for-chloroplast-development-under-cold-stress
#3
Lanlan Wu, Jun Wu, Yanxia Liu, Xiaodi Gong, Jianlong Xu, Dongzhi Lin, Yanjun Dong
BACKGROUND: Chloroplast plays a vital role in plant development and growth. The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants. In addition, cold stress affects a broad spectrum of cellular components, e.g. chloroplast, and metabolism in plants. However, the regulatory mechanism for rice PPR genes on chloroplast development still remains elusive under cold stress. RESULT: In this paper, we characterized a new rice PPR gene mutant tcd10 (thermo-sensitive chlorophyll-deficient mutant 10) that exhibits the albino phenotype, malformed chloroplast and could not survive after the 5-leaf stage when grown at 20 °C, but does the normal phenotype at 32 °C...
December 2016: Rice
https://www.readbyqxmd.com/read/27909215/cure-for-thalassemia-major-from-allogeneic-hematopoietic-stem-cell-transplantation-to-gene-therapy
#4
Alok Srivastava, Ramachandran V Shaji
Allogeneic hematopoietic stem cell transplantation has been established for several decades as a gene replacement therapy for patients with thalassemia major and now offers very high rates of cure to those who are able to access this therapy. Outcomes have improved tremendously over the last decade even in high-risk patients. The limited data available suggests that the long-term outcome is also excellent with >90% survival but for best results, hematopoietic stem cell transplantation should be offered early before any end organ damage occurs...
December 1, 2016: Haematologica
https://www.readbyqxmd.com/read/27909100/lhx2-interacts-with-the-nurd-complex-and-regulates-cortical-neuron-subtype-determinants-fezf2-and-sox11
#5
Bhavana Muralidharan, Zeba Khatri, Upasana Maheshwari, Ritika Gupta, Basabdatta Roy, Saurabh J Pradhan, Krishanpal Karmodiya, Hari Padmanabhan, Ashwin Shetty, Chinthapalli Balaji, Ullas Kolthur-Seetharam, Jeffrey D Macklis, Sanjeev Galande, Shubha Tole
: In the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor Lhx2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that Lhx2 binds to the NuRD histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin...
December 1, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
https://www.readbyqxmd.com/read/27908936/genome-editing-technologies-principles-and-applications
#6
REVIEW
Thomas Gaj, Shannon J Sirk, Sai-Lan Shui, Jia Liu
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs)...
December 1, 2016: Cold Spring Harbor Perspectives in Biology
https://www.readbyqxmd.com/read/27907896/harnessing-human-adar2-for-rna-repair-recoding-a-pink1-mutation-rescues-mitophagy
#7
Jacqueline Wettengel, Philipp Reautschnig, Sven Geisler, Philipp J Kahle, Thorsten Stafforst
Site-directed A-to-I RNA editing is a technology for re-programming genetic information at the RNA-level. We describe here the first design of genetically encodable guideRNAs that enable the re-addressing of human ADAR2 toward specific sites in user-defined mRNA targets. Up to 65% editing yield has been achieved in cell culture for the recoding of a premature Stop codon (UAG) into tryptophan (UIG). In the targeted gene, editing was very specific. We applied the technology to recode a recessive loss-of-function mutation in PINK1 (W437X) in HeLa cells and showed functional rescue of PINK1/Parkin-mediated mitophagy, which is linked to the etiology of Parkinson's disease...
October 7, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27906098/direct-reprogramming-of-urine-derived-cells-with-inducible-myod-for-modeling-human-muscle-disease
#8
Ellis Y Kim, Patrick Page, Lisa M Dellefave-Castillo, Elizabeth M McNally, Eugene J Wyatt
BACKGROUND: Cellular models of muscle disease are taking on increasing importance with the large number of genes and mutations implicated in causing myopathies and the concomitant need to test personalized therapies. Developing cell models relies on having an easily obtained source of cells, and if the cells are not derived from muscle itself, a robust reprogramming process is needed. Fibroblasts are a human cell source that works well for the generation of induced pluripotent stem cells, which can then be differentiated into cardiomyocyte lineages, and with less efficiency, skeletal muscle-like lineages...
September 15, 2016: Skeletal Muscle
https://www.readbyqxmd.com/read/27905839/gene-therapy-to-cure-hiv-where-to-from-here
#9
Rowena Johnston
A variety of approaches are being tested to cure HIV, but with the exception of the Berlin patient case, none has been successful. The Berlin patient, positive for both HIV and acute myeloid leukemia (AML), received two stem cell transplants from a donor homozygous for the CCR5delta32 mutation. In the 8 years since his second transplant, he has remained free of both HIV and AML. This case provides strong proof-of-principle that a cure for HIV is possible and might be achieved through gene therapy. Several technological barriers must be resolved and are discussed here, including the safe delivery of the intervention throughout the body of the infected person, increased efficiency of gene editing, and avoidance of resistance to the therapy...
December 2016: AIDS Patient Care and STDs
https://www.readbyqxmd.com/read/27905463/updated-ngago-gene-editing-controversy-escalates-in-peer-reviewed-papers
#10
David Cyranoski
No abstract text is available yet for this article.
November 23, 2016: Nature
https://www.readbyqxmd.com/read/27905217/to-crispr-and-beyond-the-evolution-of-genome-editing-in-stem-cells
#11
Kuang-Yui Chen, Paul S Knoepfler
The goal of editing the genomes of stem cells to generate model organisms and cell lines for genetic and biological studies has been pursued for decades. There is also exciting potential for future clinical impact in humans. While recent, rapid advances in targeted nuclease technologies have led to unprecedented accessibility and ease of gene editing, biology has benefited from past directed gene modification via homologous recombination, gene traps and other transgenic methodologies. Here we review the history of genome editing in stem cells (including via zinc finger nucleases, transcription activator-like effector nucleases and CRISPR-Cas9), discuss recent developments leading to the implementation of stem cell gene therapies in clinical trials and consider the prospects for future advances in this rapidly evolving field...
December 1, 2016: Regenerative Medicine
https://www.readbyqxmd.com/read/27905063/efficient-gene-targeting-in-mouse-zygotes-mediated-by-crispr-cas9-protein
#12
Chris J Jung, Junli Zhang, Elizabeth Trenchard, Kent C Lloyd, David B West, Barry Rosen, Pieter J de Jong
The CRISPR/Cas9 system has rapidly advanced targeted genome editing technologies. However, its efficiency in targeting with constructs in mouse zygotes via homology directed repair (HDR) remains low. Here, we systematically explored optimal parameters for targeting constructs in mouse zygotes via HDR using mouse embryonic stem cells as a model system. We characterized several parameters, including single guide RNA cleavage activity and the length and symmetry of homology arms in the construct, and we compared the targeting efficiency between Cas9, Cas9nickase, and dCas9-FokI...
November 30, 2016: Transgenic Research
https://www.readbyqxmd.com/read/27904999/from-the-first-human-gene-editing-to-the-birth-of-three-parent-baby
#13
Xiaoxue Zhang, Si Wang
No abstract text is available yet for this article.
November 29, 2016: Science China. Life Sciences
https://www.readbyqxmd.com/read/27904954/the-mathematics-of-xenology-di-cographs-symbolic-ultrametrics-2-structures-and-tree-representable-systems-of-binary-relations
#14
Marc Hellmuth, Peter F Stadler, Nicolas Wieseke
The concepts of orthology, paralogy, and xenology play a key role in molecular evolution. Orthology and paralogy distinguish whether a pair of genes originated by speciation or duplication. The corresponding binary relations on a set of genes form complementary cographs. Allowing more than two types of ancestral event types leads to symmetric symbolic ultrametrics. Horizontal gene transfer, which leads to xenologous gene pairs, however, is inherent asymmetric since one offspring copy "jumps" into another genome, while the other continues to be inherited vertically...
November 30, 2016: Journal of Mathematical Biology
https://www.readbyqxmd.com/read/27904648/editing-of-the-urease-gene-by-crispr-cas-in-the-diatom-thalassiosira-pseudonana
#15
Amanda Hopes, Vladimir Nekrasov, Sophien Kamoun, Thomas Mock
BACKGROUND: CRISPR-Cas is a recent and powerful addition to the molecular toolbox which allows programmable genome editing. It has been used to modify genes in a wide variety of organisms, but only two alga to date. Here we present a methodology to edit the genome of Thalassiosira pseudonana, a model centric diatom with both ecological significance and high biotechnological potential, using CRISPR-Cas. RESULTS: A single construct was assembled using Golden Gate cloning...
2016: Plant Methods
https://www.readbyqxmd.com/read/27903891/cloning-independent-markerless-gene-editing-in-streptococcus-sanguinis-novel-insights-in-type-iv-pilus-biology
#16
Ishwori Gurung, Jamie-Lee Berry, Alexander M J Hall, Vladimir Pelicic
Streptococcus sanguinis, a naturally competent opportunistic human pathogen, is a Gram-positive workhorse for genomics. It has recently emerged as a model for the study of type IV pili (Tfp)-exceptionally widespread and important prokaryotic filaments. To enhance genetic manipulation of Streptococcus sanguinis, we have developed a cloning-independent methodology, which uses a counterselectable marker and allows sophisticated markerless gene editing in situ We illustrate the utility of this methodology by answering several questions regarding Tfp biology by (i) deleting single or mutiple genes, (ii) altering specific bases in genes of interest, and (iii) engineering genes to encode proteins with appended affinity tags...
November 29, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/27903241/abundant-rna-editing-sites-of-chloroplast-protein-coding-genes-in-ginkgo-biloba-and-an-evolutionary-pattern-analysis
#17
Peng He, Sheng Huang, Guanghui Xiao, Yuzhou Zhang, Jianing Yu
BACKGROUND: RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance...
December 1, 2016: BMC Plant Biology
https://www.readbyqxmd.com/read/27902803/alphasim-software-for-breeding-program-simulation
#18
Anne-Michelle Faux, Gregor Gorjanc, R Chris Gaynor, Mara Battagin, Stefan M Edwards, David L Wilson, Sarah J Hearne, Serap Gonen, John M Hickey
This paper describes AlphaSim, a software package for simulating plant and animal breeding programs. AlphaSim enables the simulation of multiple aspects of breeding programs with a high degree of flexibility. AlphaSim simulates breeding programs in a series of steps: (i) simulate haplotype sequences and pedigree; (ii) drop haplotypes into the base generation of the pedigree and select single-nucleotide polymorphism (SNP) and quantitative trait nucleotide (QTN); (iii) assign QTN effects, calculate genetic values, and simulate phenotypes; (iv) drop haplotypes into the burn-in generations; and (v) perform selection and simulate new generations...
November 2016: Plant Genome
https://www.readbyqxmd.com/read/27902801/achieving-plant-crispr-targeting-that-limits-off-target-effects
#19
Jeffrey D Wolt, Kan Wang, Dipali Sashital, Carolyn J Lawrence-Dill
The CRISPR-Cas9 system (clustered regularly interspaced short palindromic repeats with associated Cas9 protein) has been used to generate targeted changes for direct modification of endogenous genes in an increasing number of plant species; but development of plant genome editing has not yet fully considered potential off-target mismatches that may lead to unintended changes within the genome. Assessing the specificity of CRISPR-Cas9 for increasing editing efficiency as well as the potential for unanticipated downstream effects from off-target mutations is an important regulatory consideration for agricultural applications...
November 2016: Plant Genome
https://www.readbyqxmd.com/read/27900888/using-the-crispr-cas9-system-to-eliminate-native-plasmids-of-zymomonas-mobilis-zm4
#20
Qing-Hua Cao, Huan-Huan Shao, Hui Qiu, Tao Li, Yi-Zheng Zhang, Xue-Mei Tan
The CRISPR/Cas system can be used to simply and efficiently edit the genomes of various species, including animals, plants, and microbes. Zymomonas mobilis ZM4 is a highly efficient, ethanol-producing bacterium that contains five native plasmids. Here, we constructed the pSUZM2a-Cas9 plasmid and a single-guide RNA expression plasmid. The pSUZM2a-Cas9 plasmid was used to express the Cas9 gene cloned from Streptococcus pyogenes CICC 10464. The single-guide RNA expression plasmid pUC-T7sgRNA, with a T7 promoter, can be used for the in vitro synthesis of single-guide RNAs...
November 30, 2016: Bioscience, Biotechnology, and Biochemistry
keyword
keyword
99356
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"