Read by QxMD icon Read

Gene edition

Reid Tingley, Georgia Ward-Fear, Lin Schwarzkopf, Matthew J Greenlees, Benjamin L Phillips, Gregory Brown, Simon Clulow, Jonathan Webb, Robert Capon, Andy Sheppard, Tanja Strive, Mark Tizard, Richard Shine
Our best hope of developing innovative methods to combat invasive species is likely to come from the study of high-profile invaders that have attracted intensive research not only into control, but also basic biology. Here we illustrate that point by reviewing current thinking about novel ways to control one of the world’s most well-studied invasions: that of the cane toad in Australia. Recently developed methods for population suppression include more effective traps based on the toad’s acoustic and pheromonal biology...
June 2017: Quarterly Review of Biology
Sumana Sharma, Evangelia Petsalaki
The cellular signalling process is a highly complex mechanism, involving multiple players, which together orchestrate the cell's response to environmental changes and perturbations. Given the multitude of genes that participate in the process of cellular signalling, its study in a genome-wide manner has proven challenging. Recent advances in gene editing technologies, including clustered regularly-interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) approaches, have opened new opportunities to investigate global regulatory signalling programs of cells in an unbiased manner...
March 21, 2018: International Journal of Molecular Sciences
Robert M Stoekenbroek, John J P Kastelein
PURPOSE OF REVIEW: This review describes the pivotal role of genetic insights and technologies in the discovery of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the rapid development of PCSK9 inhibitors - a revolutionary new class of lipid-lowering agents. RECENT FINDINGS: PCSK9 was discovered as a the third gene implicated in familial hypercholesterolemia. Population genetics studies, enabled by technological advances, were instrumental in validating PCSK9 as a therapeutic target...
March 20, 2018: Current Opinion in Cardiology
Sipla Aggarwal, Anil Kumar, Kaushal K Bhati, Gazaldeep Kaur, Vishnu Shukla, Siddharth Tiwari, Ajay K Pandey
Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA) is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species...
2018: Frontiers in Plant Science
Shengjun Wang, Yang Mao, Yoshiki Narimatsu, Zilu Ye, Weihua Tian, Christoffer K Goth, Erandi Lira-Navarrete, Nis Borbye Pedersen, Asier Benito-Vicente, Cesar Martin, Kepa B Uribe, Ramon Hurtado-Guerrero, Christina Christoffersen, Nabil G Seidah, Rikke Nielsen, Erik I Christensen, Lars Hansen, Eric P Bennett, Sergey Y Vakhrushev, Katrine T Schjoldager, Henrik Clausen
The low-density lipoprotein receptor (LDLR) and related proteins are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O-glycan-sites...
March 20, 2018: Journal of Biological Chemistry
Xiaoping Su, Kuiqing Cui, Shanshan Du, Hongli Li, Fenghua Lu, Deshun Shi, Qingyou Liu
Myostatin (MSTN), a protein encoded by growth differentiation factor 8 (GDF8), is primarily expressed in skeletal muscle and negatively regulates the development and regeneration of muscle. Accordingly, myostatin-deficient animals exhibit a double-muscling phenotype. The CRISPR/Cas9 system has proven to be an efficient genome-editing tool and has been applied to gene modification in cells from many model organisms such as Drosophila melanogaster, zebrafish, mouse, rat, sheep, and human. Here, we edited the GDF8 gene in fibroblasts and embryos of Debao pig and swamp buffalo using the CRISPR/Cas9 system...
March 19, 2018: In Vitro Cellular & Developmental Biology. Animal
J Montag, B Petersen, A K Flögel, E Becker, A Lucas-Hahn, G J Cost, C Mühlfeld, T Kraft, H Niemann, B Brenner
Familial Hypertrophic Cardiomyopathy (HCM) is the most common inherited cardiac disease. About 30% of the patients are heterozygous for mutations in the MYH7 gene encoding the ß-myosin heavy chain (MyHC). Hallmarks of HCM are cardiomyocyte disarray and hypertrophy of the left ventricle, the symptoms range from slight arrhythmias to sudden cardiac death or heart failure. To gain insight into the underlying mechanisms of the diseases' etiology we aimed to generate genome edited pigs with an HCM-mutation. We used TALEN-mediated genome editing and successfully introduced the HCM-point mutation R723G into the MYH7 gene of porcine fibroblasts and subsequently cloned pigs that were heterozygous for the HCM-mutation R723G...
March 19, 2018: Scientific Reports
Yufeng Li, Sanyuan Ma, Le Sun, Tong Zhang, Jiasong Chang, Wei Lu, Xiaoxu Chen, Yue Liu, Xiaogang Wang, Run Shi, Ping Zhao, Qingyou Xia
Genome editing using standard tools (ZFN, TALEN, and CRISPR/Cas9) rely on double strand breaks to edit the genome. A series of new CRISPR tools that convert cytidine to thymine (C to T) without the requirement for DNA double-strand breaks was developed recently and quickly applied in a variety of organisms. Here, we demonstrate that CRISPR/Cas9-dependent base editor (BE3) converts C to T with a high frequency in the invertebrate Bombyx mori silkworm. Using BE3 as a knock-out tool, we inactivated exogenous and endogenous genes through base-editing-induced nonsense mutations with an efficiency of up to 66...
March 19, 2018: G3: Genes—Genomes—Genetics
Paul P Lin, Alec J Jaeger, Tung-Yun Wu, Sharon C Xu, Abraxa S Lee, Fanke Gao, Po-Wei Chen, James C Liao
The Embden-Meyerhoff-Parnas (EMP) pathway, commonly known as glycolysis, represents the fundamental biochemical infrastructure for sugar catabolism in almost all organisms, as it provides key components for biosynthesis, energy metabolism, and global regulation. EMP-based metabolism synthesizes three-carbon (C3) metabolites before two-carbon (C2) metabolites and must emit one CO2 in the synthesis of the C2 building block, acetyl-CoA, a precursor for many industrially important products. Using rational design, genome editing, and evolution, here we replaced the native glycolytic pathways in Escherichia coli with the previously designed nonoxidative glycolysis (NOG), which bypasses initial C3 formation and directly generates stoichiometric amounts of C2 metabolites...
March 19, 2018: Proceedings of the National Academy of Sciences of the United States of America
Monia Cito, Silvia Pellegrini, Lorenzo Piemonti, Valeria Sordi
The experience in the field of islet transplantation shows that it is possible to replace β cells in a patient with type 1 diabetes (T1D), but this cell therapy is limited by the scarcity of organ donors and by the danger associated to the immunosuppressive drugs. Stem cell therapy is becoming a concrete opportunity to treat various diseases. In particular, for a disease like T1D, caused by the loss of a single specific cell type that does not need to be transplanted back in its originating site to perform its function, a stem cell-based cell replacement therapy seems to be the ideal cure...
March 2018: Endocrine Connections
Guideng Li, Alex Yick-Lun So, Reeshelle Sookram, Stephanie Wong, Jessica K Wang, Yong Ouyang, Peng He, Yapeng Su, Rafael Casellas, David Baltimore
Deregulation of several microRNAs can influence critical developmental checkpoints during hematopoiesis as well as cell functions, eventually leading to the development of autoimmune disease or cancer. We found that miR-125b is expressed in bone marrow multipotent progenitors and myeloid cells but is shut down in the B cell lineage, and the gene encoding miR-125b lacked transcriptional activation markers in B cells. To understand the biological importance of the physiological silencing of miR-125b expression in B cells, we drove its expression in the B cell lineage and found that dysregulated miR-125b expression impaired egress of immature B cells from the bone marrow to peripheral blood...
March 19, 2018: Blood
Hannah Klaassen, Yongfu Wang, Kay Adamski, Nicolas Rohner, Johanna E Kowalko
Understanding the genetic basis of trait evolution is critical to identifying the mechanisms that generated the immense amount of diversity observable in the living world. However, genetically manipulating organisms from natural populations with evolutionary adaptations remains a significant challenge. Astyanax mexicanus, the blind Mexican cavefish, exists in two interfertile forms, a surface-dwelling form and multiple independently evolved cave-dwelling forms. Cavefish have evolved a number of morphological and behavioral traits and multiple quantitative trait loci (QTL) analyses have been performed to identify loci underlying these traits...
March 16, 2018: Developmental Biology
F Hoeksema, J Karpilow, A Luitjens, F Lagerwerf, M Havenga, M Groothuizen, G Gillissen, A A C Lemckert, B Jiang, R A Tripp, C Yallop
The global adoption of vaccines to combat disease is hampered by the high cost of vaccine manufacturing. The work described herein follows two previous publications (van der Sanden et al., 2016; Wu et al., 2017) that report a strategy to enhance poliovirus and rotavirus vaccine production through genetic modification of the Vero cell lines used in large-scale vaccine manufacturing. CRISPR/Cas9 gene editing tools were used to knockout Vero target genes previously shown to play a role in polio- and rotavirus production...
March 16, 2018: Vaccine
Mengyao Wu, Senquan Liu, Yongxing Gao, Hao Bai, Vasiliki Machairaki, Gang Li, Tong Chen, Linzhao Cheng
Precise genome editing in human induced pluripotent stem cells (iPSCs) significantly enhances our capability to use human iPSCs for disease modeling, drug testing and screening as well as investigation of human cell biology. In this study, we seek to achieve conditional expression of the CD55 gene in order to interrogate its functions. We used two human iPSC lines that have unique genotypes, and constructed an inducible Cas9 gene expression system that is integrated at the AAVS1 safe harbor site in the human genome...
March 10, 2018: Stem Cell Research
Vasudevan Bakthavatchalu, Katherine J Wert, Yan Feng, Anthony Mannion, Zhongming Ge, Alexis Garcia, Kathleen E Scott, Tyler J Caron, Carolyn M Madden, Johanne T Jacobsen, Gabriel Victora, Rudolf Jaenisch, James G Fox
Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice...
2018: PloS One
Leslie Mertz
Gene editing and CRISPR (a group of repeated DNA sequences in bacteria) typically target disease-causing mutated genes by eliminating the bad gene altogether, by correcting the problem DNA to restore proper gene functioning, or by modifying a different gene to compensate for the faulty gene's lost function. One research group at Duke University in Durham, North Carolina, however, is using a different strategy to fight one of the most common inherited genetic diseases: Duchenne muscular dystrophy (DMD).
March 2018: IEEE Pulse
Joke Terryn, Tine Tricot, Madhavsai Gajjar, Catherine Verfaillie
Pluripotent stem cells have the property of long-term self-renewal and the potential to give rise to descendants of the three germ layers and hence all mature cells in the human body. Therefore, they hold the promise of offering insight not only into human development but also for human disease modeling and regenerative medicine. However, the generation of mature differentiated cells that closely resemble their in vivo counterparts remains challenging. Recent advances in single-cell transcriptomics and computational modeling of gene regulatory networks are revealing a better understanding of lineage commitment and are driving modern genome editing approaches...
2018: F1000Research
Madiha Kanwal, Xiao-Jie Ding, Xin Song, Guang-Biao Zhou, Yi Cao
Air pollution is one of the leading causes of lung cancer. Air pollution-related lung cancer is a deteriorating public health problem, particularly in developing countries. The MUC16 gene is one of the most frequently mutated genes in air pollution-related lung cancer. In the present study, MUC16 mRNA expression was increased in ∼50% of air pollution-related lung cancer samples obtained from patients residing in air-polluted regions (Xuanwei and Fuyuan, Yunnan, China), and MUC16 mRNA levels were correlated with the degree of air pollution...
February 23, 2018: Oncotarget
Andrew S Fister, Lena Landherr, Siela N Maximova, Mark J Guiltinan
Theobroma cacao , the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells...
2018: Frontiers in Plant Science
Sarene Koh, Janine Kah, Christine Y L Tham, Ninghan Yang, Erica Ceccarello, Adeline Chia, Margaret Chen, Atefeh Khakpoor, Andrea Pavesi, Anthony T Tan, Maura Dandri, Antonio Bertoletti
BACKGROUND & AIMS: Strategies to develop virus-specific T cells against hepatic viral infections have been hindered by safety concerns. We engineered non-lytic human T cells to suppress replication of hepatitis B virus (HBV) and hepatitis C virus (HCV) without overt hepatotoxicity, and investigated their antiviral activity. METHODS: We electroporated resting T cells or T cells activated by anti-CD3 with mRNAs encoding HBV or HCV-specific T-cell receptors (TCRs) to create 2 populations of TCR-reprogrammed T cells...
March 14, 2018: Gastroenterology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"