Read by QxMD icon Read


Hemanta Raj Mainali, Arun Kumaran Anguraj Vadivel, Xuyan Li, Mark Gijzen, Sangeeta Dhaubhadel
Cyclophilins (CYPs) belong to the immunophilin superfamily with peptidyl-prolyl cis-trans isomerase (PPIase) activity. They catalyze the interconversion of the cis- and trans-rotamers of the peptidyl-prolyl amide bond of peptides. A yeast-two-hybrid screening using the isoflavonoid regulator GmMYB176 as bait identified GmCYP1 as one of the interacting proteins in soybean embryos. GmCYP1 localizes both in the nucleus and cytoplasm, and interacts in planta with GmMYB176, in the nucleus, and with SGF14l (a soybean 14-3-3 protein) in the nucleus and the cytoplasm...
January 11, 2017: Scientific Reports
Miho Takaoka, Shun Ito, Yoshio Miki, Akira Nakanishi
FK506 binding protein 51 (FKBP51), a member of the immunophilin family, is involved in multiple signaling pathways, tumorigenesis, and chemoresistance. FKBP51 expression correlates with metastatic potential in melanoma and prostate cancer. However, the functions of FKBP51, particularly involving the regulation of cell motility and invasion, are not fully understood. We discovered two novel interacting partner proteins of FKBP51, i.e., deleted in liver cancer 1 (DLC1) and deleted in liver cancer 2 (DLC2), using immunoprecipitation and mass spectrometry...
December 29, 2016: Cancer Science
Griselda Hernández, David M LeMaster
Both (15)N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide (15)N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T1 and T1ρ experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed...
October 12, 2016: Journal of Biomolecular NMR
Jon Andoni Sánchez, Amparo Alfonso, Olivier P Thomas, Luís M Botana
Previous works with autumnalamide reported that Store Operated Calcium (SOC) channels were blocked through mitochondrial modulation. In the present paper we studied the effect of autumnalamide on ionomycin Ca(2+) fluxes. Thus, autumnalamide did not modify ionomycin-sensitive intracellular pools while the ionomycin-induced Ca(2+) influx was blocked with similar potency whether the incubation was done before or after ionomycin-sensitive pools depletion. Nevertheless, autumnalamide was not able to inhibit ionomycin-induced Ca(2+) influx once the membrane channels were activated...
February 2017: Immunobiology
Marine Bacchi, Magali Jullian, Serena Sirigu, Benjamin Fould, Tiphaine Huet, Lisa Bruyand, Mathias Antoine, Laurent Vuillard, Luisa Ronga, Leonard M G Chavas, Olivier Nosjean, Gilles Ferry, Karine Puget, Jean A Boutin
Synthetic biology (or chemical biology) is a growing field to which the chemical synthesis of proteins, particularly enzymes, makes a fundamental contribution. However, the chemical synthesis of catalytically active proteins (enzymes) remains poorly documented because it is difficult to obtain enough material for biochemical experiments. We chose calstabin, a 107-amino-acid proline isomerase, as a model. We synthesized the enzyme using the native chemical ligation approach and obtained several tens of milligrams...
December 2016: Protein Science: a Publication of the Protein Society
Cillian Byrne, Morkos A Henen, Mathilde Belnou, François-Xavier Cantrelle, Amina Kamah, Haoling Qi, Julien Giustiniani, Béatrice Chambraud, Etienne-Emile Baulieu, Guy Lippens, Isabelle Landrieu, Yves Jacquot
The immunophilin FKBP52 interacts with nuclear steroid hormone receptors. Studying the crystal structure of human estrogen receptor α (hERα) and using nuclear magnetic resonance, we show here that the short V(364)PGF(367) sequence, which is located within its ligand-binding domain and adopts a type II β-turn conformation in the protein, binds the peptidyl-prolyl isomerase (PPIase or rotamase) FK1 domain of FKBP52. Interestingly, this turn motif displays strong similarities with the FKBP52 FK1 domain-binding moiety of macrolide immunomodulators such as rapamycin and GPI-1046, an immunophilin ligand with neuroprotective characteristics...
September 27, 2016: Biochemistry
Yu Young Jeong, Joonyoung Her, Sue-Young Oh, In Kwon Chung
Telomerase is a unique ribonucleoprotein enzyme that is required for continued cell proliferation. To generate catalytically active telomerase, human telomerase reverse transcriptase (hTERT) must translocate to the nucleus and assemble with the RNA component of telomerase. The molecular chaperones heat shock protein 90 (Hsp90) and p23 maintain hTERT in a conformation that enables nuclear translocation. However, the regulatory role of chaperones in nuclear transport of hTERT remains unclear. In this work, we demonstrate that immunophilin FK506-binding protein (FKBP)52 linked the hTERT-Hsp90 complex to the dynein-dynactin motor, thereby promoting the transport of hTERT to the nucleus along microtubules...
October 15, 2016: Biochemical Journal
Geri Meduri, Kevin Guillemeau, Omar Dounane, Véronique Sazdovitch, Charles Duyckaerts, Béatrice Chambraud, Etienne Emile Baulieu, Julien Giustiniani
Pathologic modifications of the Tau protein leading to neurofibrillary tangle (NFT) formation are a common feature of a wide range of neurodegenerative diseases known as tauopathies, which include Alzheimer's disease (AD). We previously showed that the immunophilin FKBP52 physically and functionally interacts with Tau, and we recently reported that FKBP52 levels are abnormally low in AD patients' brains. To decipher the mechanism of FKBP52 decrease in AD brains, we performed multiple labeling immunohistofluorescence and lysosomal purification using postmortem brain samples of healthy controls (n = 8) and AD (n = 20) patients...
October 2016: Neurobiology of Aging
Ima-Obong Ebong, Victoria Beilsten-Edmands, Nisha A Patel, Nina Morgner, Carol V Robinson
Hormone receptors require participation of the chaperones Hsp40/Hsp70 to form client-transfer complexes with Hsp90/Hop. Interaction with the co-chaperone p23 releases Hop and Hsp70, and the immunophilin FKBP52 mediates transfer of the Hsp90-receptor complex to the nucleus. Inhibition of glucocorticoid receptor (GR) transport by FKBP51, but not by FKBP52, has been observed at the cellular level, but the subunit composition of the intermediates involved has not been deduced. Here we use mass spectrometry to show that FKBP51/52 form analogous complexes with GR/Hsp90/Hop/Hsp70/ATP, but differences emerge upon addition of p23 to client-transfer complexes...
2016: Cell Discovery
Deborah Rotoli, Manuel Morales, María Del Carmen Maeso, María Del Pino García, Araceli Morales, Julio Ávila, Pablo Martín-Vasallo
The immunophilin FK506-binding protein 5 (FKBP51) is a scaffold protein that serves a pivotal role in the regulation of multiple signaling pathways, integrating external and internal stimuli into distinct signal outputs. In a previous study, we identified several genes that are significantly up- or downregulated in the peripheral white cells (PWCs) of colorectal adenocarcinoma (CRC) patients undergoing oxaliplatin-based chemotherapy. In our screening, FKBP51 gene expression was downregulated following chemotherapy...
August 2016: Oncology Letters
Anna Caselli, Paolo Paoli, Alice Santi, Camilla Mugnaioni, Alessandra Toti, Guido Camici, Paolo Cirri
Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type...
October 2016: Biochimica et Biophysica Acta
Matthew J Young, Philippine C Geiszler, Marie-Christine Pardon
FKBP52 is a ubiquitously distributed immunophilin that has been associated with wide-ranging functions in cell signalling as well as hormonal and stress responses. Amongst other pathways, it acts via complex-formation with corticosteroid receptors and has consequently been associated with stress- and age- related neurodegenerative disorders including Alzheimer's and Parkinson's diseases. Reduced levels of FKBP52 have been linked to tau dysfunction and amyloid beta toxicity in AD. However, FKBP52's role in cognition and neurodegenerative disorder-like phenotypes remain to be elucidated...
October 15, 2016: Behavioural Brain Research
Qiaoli Wu, Guodong Liu, Lixia Xu, Xiaochang Wen, Ying Cai, Weijia Fan, Xiuhua Yao, Huiling Huang, Qingguo Li
Tacrolimus (FK506), an immunophilin ligand, has been widely shown to be neuroprotective in a posttraumatic period. The nuclear factor of activated T cells (NFATc1) pathway plays an important role in regenerating neurological function following traumatic brain injury (TBI), but the precise mechanism underlying FK506-induced repair of neurological functions remains unclear. In the present study, a total of 210 SD rats were enrolled and randomly divided into sham group, TBI group and FK506 group. The rats in the TBI and FK506 groups were inflicted with moderate TBI left lateral fluid percussion impact...
October 2016: Neurochemical Research
Rutger A F Gjaltema, Miesje M van der Stoel, Miriam Boersema, Ruud A Bank
Collagens are subjected to extensive posttranslational modifications, such as lysine hydroxylation. Bruck syndrome (BS) is a connective tissue disorder characterized at the molecular level by a loss of telopeptide lysine hydroxylation, resulting in reduced collagen pyridinoline cross-linking. BS results from mutations in the genes coding for lysyl hydroxylase (LH) 2 or peptidyl-prolyl cis-trans isomerase (PPIase) FKBP65. Given that the immunophilin FKBP65 does not exhibit LH activity, it is likely that LH2 activity is somehow dependent on FKPB65...
June 28, 2016: Proceedings of the National Academy of Sciences of the United States of America
Mariana Lagadari, Nadia R Zgajnar, Luciana I Gallo, Mario D Galigniana
FK506-binding proteins are members of the immunophilin family of proteins. Those immunophilins associated to the 90-kDa-heat-shock protein, Hsp90, have been proposed as potential modulators of signalling cascade factors chaperoned by Hsp90. FKBP51 and FKBP52 are the best characterized Hsp90-bound immunophilins first described associated to steroid-receptors. The reverse transcriptase subunit of telomerase, hTERT, is also an Hsp90 client-protein and is highly expressed in cancer cells, where it is required to compensate the loss of telomeric DNA after each successive cell division...
August 2016: Molecular Oncology
Zhongming Huang, Junhua Li, Shaohua Du, Yanghua Tang, Ligang Huang, Luwei Xiao, Peijian Tong
The FK506-binding protein 14 (FKBP14) is a subfamily of immunophilins, has been implicated in various biochemical processes. However, its effects on the primary malignant bone tumor, osteosarcoma, are unclear. Here, we reported that FKBP14 may be an oncogene as it overexpressed in osteosarcoma tissues and cell lines, and FKBP14 expression was correlated with metastases, recurrence, tumor maximum diameter and poor survival time. FKBP14 was associated with the biological pathways including cell cycle, apoptosis and metastasis...
June 28, 2016: Oncotarget
Lucia Raimondo, Valentina D'Amato, Alberto Servetto, Roberta Rosa, Roberta Marciano, Luigi Formisano, Concetta Di Mauro, Roberta Clara Orsini, Priscilla Cascetta, Paola Ciciola, Ana Paula De Maio, Maria Flavia Di Renzo, Sandro Cosconati, Agostino Bruno, Antonio Randazzo, Filomena Napolitano, Nunzia Montuori, Bianca Maria Veneziani, Sabino De Placido, Roberto Bianco
Inhibition of the mechanistic target of rapamycin (mTOR) is a promising treatment strategy for several cancer types. Rapamycin derivatives such as everolimus are allosteric mTOR inhibitors acting through interaction with the intracellular immunophilin FKBP12, a prolyl isomerase with different cellular functions. Although mTOR inhibitors have significantly improved survival of different cancer patients, resistance and lack of predictive factors of response remain unsolved issues. To elucidate the mechanisms of resistance to everolimus, we evaluated Met activation in everolimus-sensitive/resistant human cancer cells, in vitro and in vivo...
June 28, 2016: Oncotarget
Jerel A Fields, Cassia Overk, Anthony Adame, Jazmin Florio, Michael Mante, Andrea Pineda, Paula Desplats, Edward Rockenstein, Cristian Achim, Eliezer Masliah
BACKGROUND: HIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson's disease, Alzheimer's disease, and Huntington's disease...
May 24, 2016: Journal of Neuroinflammation
Janine Hussner, Juliane Sünwoldt, Isabell Seibert, Daniel G Gliesche, Henriette E Meyer Zu Schwabedissen
The pharmacodynamics of the loaded compounds defines clinical failure or success of a drug-eluting device. Various limus derivatives have entered clinics due to the observed positive outcome after stent implantation, which is explained by their antiproliferative activity resulting from inhibition of the cytosolic immunophilin FK506-binding protein 12. Although pimecrolimus also binds to this protein, pimecrolimus-eluting stents failed in clinics. However, despite its impact on T lymphocytes little is known about the pharmacodynamics of pimecrolimus in cultured human coronary artery cells...
August 5, 2016: European Journal of Pharmacology
Francesca Nerattini, Riccardo Chelli, Piero Procacci
The recently proposed fast switching double annihilation (FS-DAM) [Cardelli et al., J. Chem. Theory Comput., 2015, 11, 423] is aimed at computing the absolute standard dissociation free energies for the chemical equilibrium RL ⇌ R + L occurring in solution through molecular dynamics (MD) simulations at the atomistic level. The technique is based on the production of fast nonequilibrium annihilation trajectories of one of the species (the ligand) in the solvated RL complex and in the bulk solvent. As detailed in the companion theoretical paper, the free energies of these two nonequilibrium annihilation processes are recovered by using an unbiased unidirectional estimate derived from the Crooks theorem exploiting the inherent Gaussian nature of the annihilation work...
June 1, 2016: Physical Chemistry Chemical Physics: PCCP
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"