Read by QxMD icon Read

Pseudohypoaldosteronism type II

Leping Shao, Li Cui, Jingru Lu, Yanhua Lang, Irene Bottillo, Xiangzhong Zhao
Pseudohypoaldosteronism type II (PHAII) is a rare renal tubular disease that is inherited in an autosomal dominant manner. Mutations in four genes ( WNK1 , WNK4 , CUL3, and KLHL3 ) have been identified to be responsible for this disease. Cullin 3 (CUL3) and KLHL3 are subunits of Cullin-RING E3 ubiquitin ligase complexes, and the serine-threonine kinases WNK1 and WNK4 are substrates of this ubiquitin ligase. For CUL3 , all mutations associated with PHAII exclusively lead to exon 9 skipping. In this study, we identified a Chinese PHAII kindred caused by a novel synonymous mutation (c...
March 2018: FEBS Open Bio
Atsushi Sato, Hiroshi Shibuya
The with no lysine (WNK) protein kinase family is conserved among many species. Some mutations in human WNK gene are associated with pseudohypoaldosteronism type II, a form of hypertension, and hereditary sensory and autonomic neuropathy type 2A. In kidney, WNK regulates the activity of STE20/SPS1-related, proline alanine-rich kinase and/or oxidative-stress responsive 1, which in turn regulate ion co-transporters. The misregulation of this pathway is involved in the pathogenesis of pseudohypoaldosteronism type II...
2018: PloS One
Gul Hassan Sethar, Aisha Almoghawi, Nargis Khan, Wehad Altourah, Najat Mohammed Ashour
Pseudohypoaldosteronism (PHA) type II is an extremely rare disorder which presents with hypertension, hyperkalemia, and normal anion gap metabolic acidosis. PHA II is also known as familial hyperkalemic hypertension, Gordon syndrome, and chloride shunt syndrome. PHA II is an autosomal dominant disorder and is caused by mutation in WNK1, WNK4, CULLIN3, KLHL3, OSR, SPAK gene. The expression of these proteins is limited to the distal convoluted tube and collecting duct of the kidney. PHA II usually responds to salt restriction and thiazide diuretics...
March 2018: Journal of the College of Physicians and Surgeons—Pakistan: JCPSP
Koichiro Susa, Eisei Sohara, Daiei Takahashi, Tomokazu Okado, Tatemitsu Rai, Shinichi Uchida
WNK-OSR1/SPAK-NCC signaling cascade is important for regulating salt balance and blood pressure. Activation of WNK-OSR1/SPAK-NaCl cotransporter (NCC) cascade increases sodium reabsorption in the kidney, leading to pseudohypoaldosteronism type II (PHA II) characterized by salt-sensitive hypertension and hyperkalemia. It has been previously demonstrated that the amount of phosphorylated and total NCC markedly decreased in WNK4-/- mice, indicating that WNK4 plays a major role for activation of OSR1/SPAK-NCC signaling...
September 23, 2017: Biochemical and Biophysical Research Communications
Anita Willam, Mohammed Aufy, Susan Tzotzos, Dina El-Malazi, Franziska Poser, Alina Wagner, Birgit Unterköfler, Didja Gurmani, David Martan, Shahid Muhammad Iqbal, Bernhard Fischer, Hendrik Fischer, Helmut Pietschmann, Istvan Czikora, Rudolf Lucas, Rosa Lemmens-Gruber, Waheed Shabbir
Previous in vitro studies have indicated that tumor necrosis factor (TNF) activates amiloride-sensitive epithelial sodium channel (ENaC) current through its lectin-like (TIP) domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide), showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation...
2017: Frontiers in Immunology
Dídac Casas-Alba, Jordi Vila Cots, Laura Monfort Carretero, Loreto Martorell Sampol, Maria-Christina Zennaro, Xavier Jeunemaitre, Juan Antonio Camacho Díaz
Pseudohypoaldosteronism (PHA) comprises a diverse group of rare diseases characterized by sodium and potassium imbalances incorrectly attributed to a defect in aldosterone production. Two different forms of PHA have been described, type I (PHAI) and type II (PHAII). PHAI has been subclassified into renal and systemic. Given the rarity and heterogeneity of this group of disorders we report three patients who carry PHA and a brief revision of current literature focused on the comparative analysis of PHAI and PHAII...
May 1, 2017: Journal of Pediatric Endocrinology & Metabolism: JPEM
Mari Ishigami-Yuasa, Yuko Watanabe, Takayasu Mori, Hiroyuki Masuno, Shinya Fujii, Eriko Kikuchi, Shinichi Uchida, Hiroyuki Kagechika
Pseudohypoaldosteronism type II (PHAII) is characterized by hyperkalemia and hypertension despite a normal glomerular filtration rate. Abnormal activation of the signal cascade of with-no-lysine kinase (WNK) with OSR1 (oxidative stress-responsive kinase 1)/SPAK (STE20/SPS1-related proline/alanine-rich kinase) and NCC (NaCl cotransporter) results in characteristic salt-sensitive hypertension. Thus, inhibitors of the WNK-OSR1/SPAK-NCC cascade are candidates for a new class of antihypertensive drugs. In this study, we developed novel inhibitors of this signal cascade from the 9-aminoacridine lead compound 1, one of the hit compounds obtained by screening our chemical library for WNK-SPAK binding inhibitors...
July 15, 2017: Bioorganic & Medicinal Chemistry
Yuri Kasagi, Daiei Takahashi, Tomomi Aida, Hidenori Nishida, Naohiro Nomura, Moko Zeniya, Takayasu Mori, Emi Sasaki, Fumiaki Ando, Tatemitsu Rai, Shinichi Uchida, Eisei Sohara
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, Kelch-like 3 (KLHL3), and Cullin3 (CUL3) genes were identified as being responsible for hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). Normally, the KLHL3/CUL3 ubiquitin ligase complex degrades WNKs. In PHAII, the loss of interaction between KLHL3 and WNK4 increases levels of WNKs because of impaired ubiquitination, leading to abnormal over-activation of the WNK-OSR1/SPAK-NCC cascade in the kidney's distal convoluted tubules (DCT)...
May 27, 2017: Biochemical and Biophysical Research Communications
Chengbiao Zhang, Lijun Wang, Xiao-Tong Su, Junhui Zhang, Dao-Hong Lin, Wen-Hui Wang
Mice transgenic for genomic segments harboring PHAII (pseudohypoaldosteronism type II) mutant Wnk4 (with-No-Lysine kinase 4) (TgWnk4(PHAII)) have hyperkalemia which is currently believed to be the result of high activity of Na-Cl cotransporter (NCC). This leads to decreasing Na(+) delivery to the distal nephron segment including late distal convoluted tubule (DCT) and connecting tubule (CNT). Since epithelial Na(+) channel (ENaC) and renal outer medullary K(+) channel (ROMK or Kir4.1) are expressed in the late DCT and play an important role in mediating K(+) secretion, the aim of the present study is to test whether ROMK and ENaC activity in the DCT/CNT are also compromised in the mice expressing PHAII mutant Wnk4...
April 1, 2017: American Journal of Physiology. Renal Physiology
Daiei Takahashi, Takayasu Mori, Eisei Sohara, Miyako Tanaka, Motoko Chiga, Yuichi Inoue, Naohiro Nomura, Moko Zeniya, Hiroki Ochi, Shu Takeda, Takayoshi Suganami, Tatemitsu Rai, Shinichi Uchida
The with-no-lysine kinase (WNK) 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα...
April 2017: EBioMedicine
Emi Sasaki, Koichiro Susa, Takayasu Mori, Kiyoshi Isobe, Yuya Araki, Yuichi Inoue, Yuki Yoshizaki, Fumiaki Ando, Yutaro Mori, Shintaro Mandai, Moko Zeniya, Daiei Takahashi, Naohiro Nomura, Tatemitsu Rai, Shinichi Uchida, Eisei Sohara
Mutations in the with-no-lysine kinase 1 (WNK1), WNK4, kelch-like 3 (KLHL3), and cullin3 (CUL3) genes are known to cause the hereditary disease pseudohypoaldosteronism type II (PHAII). It was recently demonstrated that this results from the defective degradation of WNK1 and WNK4 by the KLHL3/CUL3 ubiquitin ligase complex. However, the other physiological in vivo roles of KLHL3 remain unclear. Therefore, here we generated KLHL3(-/-) mice that expressed β-galactosidase (β-Gal) under the control of the endogenous KLHL3 promoter...
April 1, 2017: Molecular and Cellular Biology
Larry N Agbor, Stella-Rita C Ibeawuchi, Chunyan Hu, Jing Wu, Deborah R Davis, Henry L Keen, Frederick W Quelle, Curt D Sigmund
Cullin-3 (CUL3) mutations (CUL3Δ9) were previously identified in hypertensive patients with pseudohypoaldosteronism type-II (PHAII), but the mechanism causing hypertension and whether this is driven by renal tubular or extratubular mechanisms remains unknown. We report that selective expression of CUL3Δ9 in smooth muscle acts by interfering with expression and function of endogenous CUL3, resulting in impaired turnover of the CUL3 substrate RhoA, increased RhoA activity, and augmented RhoA/Rho kinase signaling...
November 17, 2016: JCI Insight
Marie Mitani, Munehiro Furuichi, Satoshi Narumi, Tomonobu Hasegawa, Motoko Chiga, Shinichi Uchida, Seiji Sato
Pseudohypoaldosteronism type II (PHA II) is a renal tubular disease that causes hyperkalemia, hypertension, and metabolic acidosis. Mutations in four genes (WNK4, WNK1, KLHL3, and CUL3) are known to cause PHA II. We report a patient with PHA II carrying a KLHL3 mutation, who also had congenital hypopituitarism. The patient, a 3-yr-old boy, experienced loss of consciousness at age 10 mo. He exhibited growth failure, hypertension, hyperkalemia, and metabolic acidosis. We diagnosed him as having PHA II because he had low plasma renin activity with normal plasma aldosterone level and a low transtubular potassium gradient...
October 2016: Clinical Pediatric Endocrinology: Case Reports and Clinical Investigations: Official Journal of the Japanese Society for Pediatric Endocrinology
Lingyun Wang, Ji-Bin Peng
Interaction between the acidic motif (AM) of protein kinase WNK4 and the Kelch domain of KLHL3 are involved in the pathogenesis of pseudohypoaldosteronism type II, a hereditary form of hypertension. This interaction is disrupted by some disease-causing mutations in either WNK4 or KLHL3, or by angiotensin II- and insulin-induced phosphorylation of KLHL3 at serine 433, which is also a site frequently mutated in patients. However, the mechanism by which this phosphorylation disrupts the interaction is unclear...
February 2017: Protein Science: a Publication of the Protein Society
Richard Hollander, Geert Mortier, Koen van Hoeck
Hyperkalemia in young children is a rare phenomenon and in many cases caused by hemolysis in the specimen due to difficulties in obtaining a sample. However, hyperkalemia can also be a sign of a rare Mendelian syndrome known as familial hyperkalemic hypertension or pseudohypoaldosteronism type II. This disease is characterized by hyperkalemia, hypertension, and mild hyperchloremic metabolic acidosis (with normal anion gap) despite normal glomerular filtration. Full recovery of these abnormalities with thiazide diuretics is essential not to miss the diagnosis of this syndrome...
December 2016: European Journal of Pediatrics
Adriana Mercado, Paola de Los Heros, Zesergio Melo, María Chávez-Canales, Adrián R Murillo-de-Ozores, Erika Moreno, Silvana Bazúa-Valenti, Norma Vázquez, Juliette Hadchouel, Gerardo Gamba
The K(+)-Cl(-) cotransporters (KCC1-KCC4) encompass a branch of the SLC12 family of electroneutral cation-coupled chloride cotransporters that translocate ions out of the cell to regulate various factors, including cell volume and intracellular chloride concentration, among others. L-WNK1 is an ubiquitously expressed kinase that is activated in response to osmotic stress and intracellular chloride depletion, and it is implicated in two distinct hereditary syndromes: the renal disease pseudohypoaldosteronism type II (PHAII) and the neurological disease hereditary sensory neuropathy 2 (HSN2)...
July 1, 2016: American Journal of Physiology. Cell Physiology
Juliette Hadchouel, David H Ellison, Gerardo Gamba
The discovery of four genes responsible for pseudohypoaldosteronism type II, or familial hyperkalemic hypertension, which features arterial hypertension with hyperkalemia and metabolic acidosis, unmasked a complex multiprotein system that regulates electrolyte transport in the distal nephron. Two of these genes encode the serine-threonine kinases WNK1 and WNK4. The other two genes [kelch-like 3 (KLHL3) and cullin 3 (CUL3)] form a RING-type E3-ubiquitin ligase complex that modulates WNK1 and WNK4 abundance. WNKs regulate the activity of the Na(+):Cl(-) cotransporter (NCC), the epithelial sodium channel (ENaC), the renal outer medullary potassium channel (ROMK), and other transport pathways...
2016: Annual Review of Physiology
Junichi Maruyama, Yumie Kobayashi, Tsuyoshi Umeda, Alain Vandewalle, Kohsuke Takeda, Hidenori Ichijo, Isao Naguro
The With No lysine [K] (WNK)-Ste20-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway has been reported to be a crucial signaling pathway for triggering pseudohypoaldosteronism type II (PHAII), an autosomal dominant hereditary disease that is characterized by hypertension. However, the molecular mechanism(s) by which the WNK-SPAK/OSR1 pathway is regulated remain unclear. In this report, we identified WNK4 as an interacting partner of a recently identified MAP3K, apoptosis signal-regulating kinase 3 (ASK3)...
January 6, 2016: Scientific Reports
Tennille N Webb, Rolando Carrisoza-Gaytan, Nicolas Montalbetti, Anna Rued, Ankita Roy, Alexandra M Socovich, Arohan R Subramanya, Lisa M Satlin, Thomas R Kleyman, Marcelo D Carattino
Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1), WNK4, and Kelch-like 3/Cullin 3, two components of an E3 ubiquitin ligase complex that degrades WNKs. We examined whether the full-length (or "long") form of WNK1 (L-WNK1) affected the expression of BK α-subunits in HEK cells...
January 1, 2016: American Journal of Physiology. Renal Physiology
Yuya Araki, Tatemitsu Rai, Eisei Sohara, Takayasu Mori, Yuichi Inoue, Kiyoshi Isobe, Eriko Kikuchi, Akihito Ohta, Sei Sasaki, Shinichi Uchida
Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids...
October 21, 2015: Biology Open
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"