keyword
MENU ▼
Read by QxMD icon Read
search

DNA DAMAGE AND REPAIR

keyword
https://www.readbyqxmd.com/read/28226775/evaluation-of-multidrug-cancer-chronotherapy-based-on-cell-cycle-model-under-influences-of-circadian-clock
#1
Hiroshi Inokawa, Norihiro Katayama, Mitsuyuki Nakao, Hiroshi Inokawa, Norihiro Katayama, Mitsuyuki Nakao, Mitsuyuki Nakao, Hiroshi Inokawa, Norihiro Katayama
The intracellular circadian clock mechanisms are known to affect various substantial cellular machinery such as cell cycle progression, inflammatory response, apoptosis, and DNA repair. Cancer growth in various tissues is still under circadian control, which may be at least partly underlain by the survived connections between the intracellular machinery and the clock. Considering such findings, chronotherapy has been applied to cancer treatments, in which anti-cancer drugs are administered in scheduled circadian times so as to resolve the trade-off between damages against the normal and cancer cells...
August 2016: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society
https://www.readbyqxmd.com/read/28223526/hypermutation-signature-reveals-a-slippage-and-realignment-model-of-translesion-synthesis-by-rev3-polymerase-in-cisplatin-treated-yeast
#2
Romulo Segovia, Yaoqing Shen, Scott A Lujan, Steven J M Jones, Peter C Stirling
Gene-gene or gene-drug interactions are typically quantified using fitness as a readout because the data are continuous and easily measured in high throughput. However, to what extent fitness captures the range of other phenotypes that show synergistic effects is usually unknown. Using Saccharomyces cerevisiae and focusing on a matrix of DNA repair mutants and genotoxic drugs, we quantify 76 gene-drug interactions based on both mutation rate and fitness and find that these parameters are not connected. Independent of fitness defects, we identified six cases of synthetic hypermutation, where the combined effect of the drug and mutant on mutation rate was greater than predicted...
February 21, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28223401/transcriptome-analyses-of-rhesus-monkey-pre-implantation-embryos-reveal-a-reduced-capacity-for-dna-double-strand-break-repair-in-primate-oocytes-and-early-embryos
#3
Xinyi Wang, Denghui Liu, Dajian He, Shengbo Suo, Xian Xia, Xiechao He, Jing-Dong Han, Ping Zheng
Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell fate commitment, most of which remain mechanistically unclear in primates. In addition, primates display a high rate of embryo wastage without any clear molecular basis. Understanding the factors involved in genome reprogramming and ZGA will help the generation of induced pluripotent stem cells with high efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution...
February 21, 2017: Genome Research
https://www.readbyqxmd.com/read/28223109/fluoride-exposure-abates-pro-inflammatory-response-and-induces-in-vivo-apoptosis-rendering-zebrafish-danio-rerio-susceptible-to-bacterial-infections
#4
Rashmi Singh, Preeti Khatri, Nidhi Srivastava, Shruti Jain, Vani Bramchari, Asish Mukhopadhyay, Shibnath Mazumder
The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC50) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes...
February 18, 2017: Fish & Shellfish Immunology
https://www.readbyqxmd.com/read/28222669/downregulated-xpa-promotes-carcinogenesis-of-bladder-cancer-via-impairment-of-dna-repair
#5
Yi Zhi, Huixiang Ji, Jinhong Pan, Peng He, Xiaozhou Zhou, Heng Zhang, Zhansong Zhou, Zhiwen Chen
Bladder cancer is the most common malignant tumor of urinary system, largely resulting from failure of repair of DNA damage to the environmental insults. The function of XPA in nucleotide excision repair pathway has been well documented. However, participation of XPA in the repair of DNA double-strand break remains unknown. Here, we reported that bladder cancer expressed low XPA levels compared to adjacent non-tumor bladder tissue, and this phenotype was closely associated with chromosomal aberrations. Moreover, downregulated XPA appeared to increase incidence of chromosome aberration...
February 2017: Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine
https://www.readbyqxmd.com/read/28220800/bladder-cancer-mutations-in-dna-damage-repair-pathways-confer-platinum-sensitivity
#6
Peter Sidaway
No abstract text is available yet for this article.
February 14, 2017: Nature Reviews. Urology
https://www.readbyqxmd.com/read/28219770/silencing-of-the-mrna-binding-protein-hur-increases-the-sensitivity-of-colorectal-cancer-cells-to-ionizing-radiation-through-upregulation-of-caspase-2
#7
Amel Badawi, Stephanie Hehlgans, Josef Pfeilschifter, Franz Rödel, Wolfgang Eberhardt
Increased abundance of the mRNA-binding protein human antigen R (HuR) is a characteristic feature of many cancers and frequently associated with a high grade malignancy and therapy resistance. HuR elicits a broad cell survival program mainly by stabilizing or increasing the translation of mRNAs coding for anti-apoptotic effector proteins. Conversally, we previously identified the pro-apoptotic caspase-2 as a novel HuR target which is mainly regulated at the level of translation. In this study, we investigated whether siRNA-mediated HuR knockdown interferes with cell survival and radiation sensitivity by monitoring apoptosis, DNA repair and three-dimensional (3D) clonogenic survival...
February 17, 2017: Cancer Letters
https://www.readbyqxmd.com/read/28218681/the-intra-s-checkpoint-responses-to-dna-damage
#8
REVIEW
Divya Ramalingam Iyer, Nicholas Rhind
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint...
February 17, 2017: Genes
https://www.readbyqxmd.com/read/28218519/probing-the-dynamic-interaction-between-damaged-dna-and-a-cellular-responsive-protein-using-a-piezoelectric-mass-biosensor
#9
Yulong Jin, Yunfeng Xie, Kui Wu, Yanyan Huang, Fuyi Wang, Rui Zhao
The binding events between damaged DNA and recognition biomolecules are of great interest for understanding of the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing the dynamic molecular recognition between cisplatin-damaged DNA (cisPt-DNA) and a cellular responsive protein, high mobility group box 1 (HMGB1). By integrating of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated...
February 20, 2017: ACS Applied Materials & Interfaces
https://www.readbyqxmd.com/read/28218043/uhrf1-the-key-regulator-of-epigenetics-and-molecular-target-for-cancer-therapeutics
#10
Harsimran Sidhu, Neena Capalash
UHRF1 is a master regulator of epigenome as it coordinates DNA methylation and histone modifications. Compelling evidence suggests a strong link between UHRF1 overexpression and tumorigenesis, substantiating its ability to act as a potential biomarker for cancer diagnosis and prognosis. UHRF1 also mediates repair of damaged DNA that makes cancer cells resistant toward cytocidal drugs. Hence, understanding the molecular mechanism of UHRF1 regulation would help in developing cancer therapeutics. Natural compounds have shown applicability to downregulate UHRF1 leading to growth arrest and apoptosis in cancer cells...
February 2017: Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine
https://www.readbyqxmd.com/read/28216226/nbs1-phosphorylation-status-dictates-repair-choice-of-dysfunctional-telomeres
#11
Rekha Rai, Chunyi Hu, Cayla Broton, Yong Chen, Ming Lei, Sandy Chang
Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2(TRFH) domain...
February 8, 2017: Molecular Cell
https://www.readbyqxmd.com/read/28216063/the-nad-precursor-nicotinic-acid-improves-genomic-integrity-in-human-peripheral-blood-mononuclear-cells-after-x-irradiation
#12
Kathrin Weidele, Sascha Beneke, Alexander Bürkle
NAD(+) is an essential cofactor for enzymes catalyzing redox-reactions as well as an electron carrier in energy metabolism. Aside from this, NAD(+) consuming enzymes like poly(ADP-ribose) polymerases and sirtuins are important regulators involved in chromatin-restructuring processes during repair and epigenetics/transcriptional adaption. In order to replenish cellular NAD(+) levels after cleavage, synthesis starts from precursors such as nicotinamide, nicotinamide riboside or nicotinic acid to match the need for this essential molecule...
February 13, 2017: DNA Repair
https://www.readbyqxmd.com/read/28215644/from-molecular-insight-to-therapeutic-strategy-the-holistic-approach-for-treating-triple-negative-breast-cancer
#13
REVIEW
Rittwika Bhattacharya, Koyel Banerjee, Nupur Mukherjee, Minakshi Sen, Ashis Mukhopadhyay
Aim of the present study was to analyze the molecular pathogenesis of TNBC, therapeutic practice, challenges, and future goals in treatment strategies. Based on the alterations of distinct pathways, Lehmann's subgroups of TNBCs were further categorized. Those with defective DNA damage repair and replication pathways, viz. Basal Like 1 & 2 (BL1, BL2) were found susceptible to DNA intercalating drugs while those with upregulated cell signalling & motility (mesenchymal (M), mesemchymal stem like (MSL)), cell survival (BL2, M, MSL), angiogenesis (BL2, MSL), T cell signalling (Immunomodulatory/IM) pathways required targeted therapies...
January 19, 2017: Pathology, Research and Practice
https://www.readbyqxmd.com/read/28213517/the-p53-binding-protein-1-tudor-interacting-repair-regulator-complex-participates-in-the-dna-damage-response
#14
Aili Zhang, Bo Peng, Ping Huang, Junjie Chen, Zihua Gong
The 53BP1-dependent end-joining pathway plays a critical role in DSB repair and is uniquely responsible for cellular sensitivity to PARPi in BRCA1-deficient cancers. We and others have investigated the downstream effectors of 53BP1, including replication timing regulatory factor 1 (RIF1) and Pax transactivation domain-interacting protein (PTIP), in the past few years to elucidate how loss of the 53BP1-dependent repair pathway results in PARPi resistance in BRCA1 patients. However, questions regarding the upstream regulation of the 53BP1 pathway remain unanswered...
February 17, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28212554/afb1-hepatocarcinogenesis-is-via-lipid-peroxidation-that-inhibits-dna-repair-sensitizes-mutation-susceptibility-and-induces-aldehyde-dna-adducts-at-p53-mutational-hotspot-codon-249
#15
Mao-Wen Weng, Hyun-Wook Lee, Bongkun Choi, Hsiang-Tsui Wang, Yu Hu, Manju Mehta, Dhimant Desai, Shantu Amin, Yi Zheng, Moon-Shong Tang
Aflatoxin B1 (AFB1) contamination in the food chain is a major cause of hepatocellular carcinoma (HCC). More than 60% of AFB1 related HCC carry p53 codon 249 mutations but the causal mechanism remains unclear. We found that 1) AFB1 induces two types of DNA adducts in human hepatocytes, AFB1-8,9-epoxide-deoxyguanosine (AFB1-E-dG) induced by AFB1-E and cyclic α-methyl-γ-hydroxy-1,N2-propano-dG (meth-OH-PdG) induced by lipid peroxidation generated acetaldehyde (Acet) and crotonaldehyde (Cro); 2) the level of meth-OH-PdG is >30 fold higher than the level of AFB1-E-dG; 3) AFB1, Acet, and Cro, but not AFB1-E, preferentially induce DNA damage at codon 249; 4) methylation at -CpG- sites enhances meth-OH-PdG formation at codon 249; and 5) repair of meth-OH-PdG at codon 249 is poor...
February 14, 2017: Oncotarget
https://www.readbyqxmd.com/read/28212397/a-targeted-gene-expression-platform-allows-for-rapid-analysis-of-chemical-induced-antioxidant-mrna-expression-in-zebrafish-larvae
#16
Margaret G Mills, Evan P Gallagher
Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1)...
2017: PloS One
https://www.readbyqxmd.com/read/28211448/cx-5461-is-a-dna-g-quadruplex-stabilizer-with-selective-lethality-in-brca1-2-deficient-tumours
#17
Hong Xu, Marco Di Antonio, Steven McKinney, Veena Mathew, Brandon Ho, Nigel J O'Neil, Nancy Dos Santos, Jennifer Silvester, Vivien Wei, Jessica Garcia, Farhia Kabeer, Daniel Lai, Priscilla Soriano, Judit Banáth, Derek S Chiu, Damian Yap, Daniel D Le, Frank B Ye, Anni Zhang, Kelsie Thu, John Soong, Shu-Chuan Lin, Angela Hsin Chin Tsai, Tomo Osako, Teresa Algara, Darren N Saunders, Jason Wong, Jian Xian, Marcel B Bally, James D Brenton, Grant W Brown, Sohrab P Shah, David Cescon, Tak W Mak, Carlos Caldas, Peter C Stirling, Phil Hieter, Shankar Balasubramanian, Samuel Aparicio
G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks...
February 17, 2017: Nature Communications
https://www.readbyqxmd.com/read/28209968/activating-akt1-mutations-alter-dna-double-strand-break-repair-and-radiosensitivity
#18
S Oeck, K Al-Refae, H Riffkin, G Wiel, R Handrick, D Klein, G Iliakis, V Jendrossek
The survival kinase Akt has clinical relevance to radioresistance. However, its contributions to the DNA damage response, DNA double strand break (DSB) repair and apoptosis remain poorly defined and often contradictory. We used a genetic approach to explore the consequences of genetic alterations of Akt1 for the cellular radiation response. While two activation-associated mutants with prominent nuclear access, the phospho-mimicking Akt1-TDSD and the clinically relevant PH-domain mutation Akt1-E17K, accelerated DSB repair and improved survival of irradiated Tramp-C1 murine prostate cancer cells and Akt1-knockout murine embryonic fibroblasts in vitro, the classical constitutively active membrane-targeted myrAkt1 mutant had the opposite effects...
February 17, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28209516/movement-of-the-%C3%AE-hairpin-in-the-third-zinc-binding-module-of-uvra-is-required-for-dna-damage-recognition
#19
Thanyalak Kraithong, Ketsaraphorn Channgam, Ornchuma Itsathitphaisarn, Montip Tiensuwan, David Jeruzalmi, Danaya Pakotiprapha
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing...
February 7, 2017: DNA Repair
https://www.readbyqxmd.com/read/28209515/cell-type-specific-role-of-the-rna-binding-protein-nono-in-the-dna-double-strand-break-response-in-the-mouse-testes
#20
Shuyi Li, Feng-Jue Shu, Zhentian Li, Lahcen Jaafar, Shourong Zhao, William S Dynan
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono (gt))...
February 10, 2017: DNA Repair
keyword
keyword
9733
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"