Read by QxMD icon Read


Mary E Grantham, Jennifer A Brisson
Phenotypic plasticity results in a diversity of phenotypes from a single genotype in response to environmental cues. To understand the molecular basis of phenotypic plasticity, studies have focused on differential gene expression levels between environmentally-determined phenotypes. The extent of alternative splicing differences among environmentally-determined phenotypes has largely been understudied. Here we study alternative splicing differences among plastically-produced morphs of the pea aphid using RNA-sequence data...
May 2, 2018: Molecular Biology and Evolution
Nunu Mchedlishvili, Helen K Matthews, Adam Corrigan, Buzz Baum
BACKGROUND: Entry into mitosis triggers profound changes in cell shape and cytoskeletal organisation. Here, by studying microtubule remodelling in human flat mitotic cells, we identify a two-step process of interphase microtubule disassembly. RESULTS: First, a microtubule-stabilising protein, Ensconsin/MAP7, is inactivated in prophase as a consequence of its phosphorylation downstream of Cdk1/cyclin B. This leads to a reduction in interphase microtubule stability that may help to fuel the growth of centrosomally nucleated microtubules...
January 23, 2018: BMC Biology
Paul Mooney, Taylor Sulerud, James F Pelletier, Matthew R Dilsaver, Miroslav Tomschik, Christoph Geisler, Jesse C Gatlin
The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin- and microtubule (MT)-dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho-deficient version of the MT-binding domain of Tau (mTMBD)...
June 2017: Cytoskeleton
Robyn J Law, Hong T Law, Joshua M Scurll, Roland Scholz, Andrew S Santos, Stephanie R Shames, Wanyin Deng, Matthew A Croxen, Yuling Li, Carmen L de Hoog, Joris van der Heijden, Leonard J Foster, Julian A Guttman, B Brett Finlay
Enteropathogenic and enterohemorrhagic Escherichia coli cause enteric diseases resulting in significant morbidity and mortality worldwide. These pathogens remain extracellular and translocate a set of type III secreted effector proteins into host cells to promote bacterial virulence. Effectors manipulate host cell pathways to facilitate infection by interacting with a variety of host targets, yet the binding partners and mechanism of action of many effectors remain elusive. We performed a mass spectrometry screen to identify host targets for a library of effectors...
May 6, 2016: Journal of Proteome Research
Emmanuel Gallaud, Renaud Caous, Aude Pascal, Franck Bazile, Jean-Philippe Gagné, Sébastien Huet, Guy G Poirier, Denis Chrétien, Laurent Richard-Parpaillon, Régis Giet
The mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation...
March 31, 2014: Journal of Cell Biology
Kari Barlan, Wen Lu, Vladimir I Gelfand
Kinesin-1 is a major microtubule motor that drives transport of numerous cellular cargoes toward the plus ends of microtubules. In the cell, kinesin-1 exists primarily in an inactive, autoinhibited state, and motor activation is thought to occur upon binding to cargo through the C terminus. Using RNAi-mediated depletion in Drosophila S2 cells, we demonstrate that kinesin-1 requires ensconsin (MAP7, E-MAP-115), a ubiquitous microtubule-associated protein, for its primary function of organelle transport. We show that ensconsin is required for organelle transport in Drosophila neurons and that Drosophila homozygous for ensconsin gene deletion are unable to survive to adulthood...
February 18, 2013: Current Biology: CB
Thomas Metzger, Vincent Gache, Mu Xu, Bruno Cadot, Eric S Folker, Brian E Richardson, Edgar R Gomes, Mary K Baylies
The basic unit of skeletal muscle in all metazoans is the multinucleate myofibre, within which individual nuclei are regularly positioned. The molecular machinery responsible for myonuclear positioning is not known. Improperly positioned nuclei are a hallmark of numerous diseases of muscle, including centronuclear myopathies, but it is unclear whether correct nuclear positioning is necessary for muscle function. Here we identify the microtubule-associated protein ensconsin (Ens)/microtubule-associated protein 7 (MAP7) and kinesin heavy chain (Khc)/Kif5b as essential, evolutionarily conserved regulators of myonuclear positioning in Drosophila and cultured mammalian myotubes...
March 18, 2012: Nature
M Wühr, N D Obholzer, S G Megason, H W Detrich, T J Mitchison
The large and transparent cells of cleavage-stage zebrafish embryos provide unique opportunities to study cell division and cytoskeletal dynamics in very large animal cells. Here, we summarize recent progress, from our laboratories and others, on live imaging of the microtubule and actin cytoskeletons during zebrafish embryonic cleavage. First, we present simple protocols for extending the breeding competence of zebrafish mating ensembles throughout the day, which ensures a steady supply of embryos in early cleavage, and for mounting these embryos for imaging...
2011: Methods in Cell Biology
Hsin-Ho Sung, Ivo A Telley, Piyi Papadaki, Anne Ephrussi, Thomas Surrey, Pernille Rørth
Ensconsin is a conserved microtubule-associated protein (MAP) that interacts dynamically with microtubules, but its cellular function has remained elusive. We show that Drosophila ensconsin is required for all known kinesin-1-dependent processes in the polarized oocyte without detectable effects on microtubules. ensconsin is also required in neurons. Using a single molecule assay for kinesin-1 motility in Drosophila ovary extract, we show that recruitment to microtubules and subsequent motility is severely impaired without ensconsin...
December 2008: Developmental Cell
J C Bulinski, D Gruber, K Faire, P Prasad, W Chang
E-MAP-115 (ensconsin) is a microtubule-associated protein (MAP) abundant in carcinoma and other epithelia-derived cells. We expressed chimeras of green fluorescent protein (GFP) conjugated to ensconsin's N-terminal MT-binding domain (EMTB), to study distribution, dynamics, and function of the MAP in living cells. We tested the hypothesis that behavior of expressed GFP-EMTB accurately matched behavior of endogenous ensconsin. Like endogenous MAP, GFP-EMTB was associated with microtubules in living or fixed cells, and microtubule association of either molecule was impervious to extraction with nonionic detergents...
October 1999: Cell Structure and Function
Marie-Thérèse Vanier, Paula Deck, Jeanne Stutzmann, Patrick Gendry, Christiane Arnold, Sylvie Dirrig-Grosch, Michèle Kedinger, Jean-François Launay
Epithelial cell proliferation and differentiation occur concomitant with striking remodeling of the cytoskeleton. Microtubules (MTs) play important roles in these processes, during which the MTs themselves are reorganized and stabilized by microtubule-associated proteins (MAPs). Among the proteins classified as structural MAPs, E-MAP-115 (also named ensconsin) is preferentially expressed in cells of epithelial origin. The aims of this study were, first, to determine if E-MAP-115, like other MAPs, is expressed as different isoforms during differentiation and, second, to perform a detailed analysis of the expression and distribution of any E-MAP-115 variants detected in intestinal epithelial cells during their polarization/differentiation...
August 2003: Cell Motility and the Cytoskeleton
J C Bulinski, D J Odde, B J Howell, T D Salmon, C M Waterman-Storer
Microtubule-associated proteins (MAPs) are proteins that reversibly bind to and regulate microtubule dynamics and functions in vivo. We examined the dynamics of binding of a MAP called ensconsin (E-MAP-115) to microtubules in vivo. We used 5xGFP-EMTB, a construct in which the microtubule-binding domain of ensconsin (EMTB) is fused to five copies of green fluorescent protein (GFP), as a reporter molecule amenable to the use of fluorescent speckle microscopy. Fluorescent speckle microscopy (FSM) sequences and kymograph analyses showed rapid dynamics of speckles comprised of 5xGFP-EMTB in untreated cells...
November 2001: Journal of Cell Science
D Gruber, K Faire, J C Bulinski
Correlation between expression level of a microtubule-associated protein called ensconsin (E-MAP-115) and degree of Taxol sensitivity in several cultured cell lines prompted us to investigate potential cause-and-effect relationships between ensconsin level and Taxol action. We used human MCF-7 or HeLa cells, which are sensitive to low Taxol concentrations (LD(50) of 30-35 and 3.5 nM, respectively) to prepare stably transfected populations of cells expressing heterogeneous levels of ensconsin chimeras, either green fluorescent protein (GFP) conjugated to full-length ensconsin (GFP-Ensc) or to ensconsin's microtubule-binding domain (GFP-EMTB)...
July 2001: Cell Motility and the Cytoskeleton
K Faire, C M Waterman-Storer, D Gruber, D Masson, E D Salmon, J C Bulinski
Microtubule-associated proteins (MAPs) have been hypothesized to regulate microtubule dynamics and/or functions. To test hypotheses concerning E-MAP-115 (ensconsin) function, we prepared stable cell lines expressing conjugates in which the full-length MAP (Ensc) or its microtubule-binding domain (EMTB) was conjugated to one or more green fluorescent protein (GFP) molecules. Because both distribution and microtubule-binding properties of GFP-Ensc, GFP-EMTB, and 2x, 3x, or 4xGFP-EMTB chimeras all appeared to be identical to those of endogenous E-MAP-115 (ensconsin), we used the 2xGFP-EMTB molecule as a reporter for the behavior and microtubule-binding function of endogenous MAP...
December 1999: Journal of Cell Science
J C Bulinski, A Bossler
In previous studies (Bulinski and Borisy (1979). Proc. Nat. Acad. Sci. 76, 293-297; Weatherbee et al. (1980). Biochemistry 19, 4116-4123) a microtubule-associated protein (MAP) of M(r) approximately 125,000 was identified as a prominent MAP in HeLa cells. We set out to perform a biochemical characterization of this protein, and to determine its in vitro functions and in vivo distribution. We determined that, like the assembly-promoting MAPs, tau, MAP2 and MAP4, the 125 kDa MAP was both proteolytically sensitive and thermostable...
October 1994: Journal of Cell Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"