Read by QxMD icon Read

Zinc transporter plant

Berta Gallego, Soledad Martos, Catalina Cabot, Juan Barceló, Charlotte Poschenrieder
The hypothesis of metal defense as a substitute for a defective biotic stress signaling system in metal hyperaccumulators was tested using the pathosystem Alternaria brassicicola - Noccaea caerulescens under low (2 μM), medium (12 μM), and high (102 μM) Zn supply. Regardless the Zn supply, N. caerulescens responded to fungal attack with the activation of both HMA4 coding for a Zn transporter, and biotic stress signaling pathways. Salicylate, jasmonate, abscisic acid, and indoleacetic acid concentrations, as well as biotic stress marker genes (PDF1...
October 13, 2016: Physiologia Plantarum
Soumitra Paul, Dipak Gayen, Swapan K Datta, Karabi Datta
The present study highlights the molecular regulation of iron transport in soyFER1-overexpressing transgenic rice. Accumulation of iron in three different seed developmental stages, milk, dough, and mature, has been examined. The transgenic seeds of the milk stage showed significant augmentation of iron and zinc levels compared with wild-type seeds, and similar results were observed throughout the dough and mature stages. To investigate the regulation of iron transport, the role of miRNAs was studied in roots of transgenic rice...
October 2016: Journal of Experimental Botany
Raviraj Banakar, Ána Alvarez Fernández, Javier Abadía, Teresa Capell, Paul Christou
Many metal transporters in plants are promiscuous, accommodating multiple divalent cations including some which are toxic to humans. Previous attempts to increase the iron (Fe) and zinc (Zn) content of rice endosperm by overexpressing different metal transporters have therefore led unintentionally to the accumulation of copper (Cu), manganese (Mn) and cadmium (Cd). Unlike other metal transporters, barley Yellow Stripe 1 (HvYS1) is specific for Fe. We investigated the mechanistic basis of this preference by constitutively expressing HvYS1 in rice under the control of the maize ubiquitin1 promoter and comparing the mobilization and loading of different metals...
September 16, 2016: Plant Biotechnology Journal
Kamila Rachwał, Aleksandra Boguszewska, Joanna Kopcińska, Magdalena Karaś, Marek Tchórzewski, Monika Janczarek
Rhizobium leguminosarum bv. trifolii is capable of establishing a symbiotic relationship with plants from the genus Trifolium. Previously, a regulatory protein encoded by rosR was identified and characterized in this bacterium. RosR possesses a Cys2-His2-type zinc finger motif and belongs to Ros/MucR family of rhizobial transcriptional regulators. Transcriptome profiling of the rosR mutant revealed a role of this protein in several cellular processes, including the synthesis of cell-surface components and polysaccharides, motility, and bacterial metabolism...
2016: Frontiers in Microbiology
Ebrahem M Eid, Ahmed F El-Bebany, Sulaiman A Alrumman, Abd El-Latif Hesham, Mostafa A Taher, Khaled F Fawy
In this study, we present the response of spinach to different amendment rates of sewage sludge (0, 10, 20, 30, 40 and 50 g kg(-1)) in a greenhouse pot experiment, where plant growth, biomass and heavy metal uptake were measured. The results showed that sewage sludge application increased soil EC, organic matter, chromium and zinc concentrations and decreased soil pH. All heavy metal concentrations of the sewage sludge were below the permissible limits for land application of sewage sludge recommended by the Council of the European Communities...
September 3, 2016: International Journal of Phytoremediation
Lu Tang, Aijun Yao, Ming Yuan, Yetao Tang, Jian Liu, Xi Liu, Rongliang Qiu
Zinc (Zn) and cadmium (Cd) are two closely related chemical elements with very different biological roles in photosynthesis. Zinc plays unique biochemical functions in photosynthesis. Previous studies suggested that in some Zn/Cd hyperaccumulators, many steps in photosynthesis may be Cd tolerant or even Cd stimulated. Using RNA-seq data, we found not only that Cd and Zn both up-regulated the CA1 gene, which encodes a β class carbonic anhydrase (CA) in chloroplasts, but that a large number of other Zn up-regulated genes in the photosynthetic pathway were also significantly up-regulated by Cd in leaves of the Zn/Cd hyperaccumulator Sedum alfredii...
December 2016: Chemosphere
Marcin Adamczuk, Lukasz Dziewit
The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1. The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81...
September 2, 2016: Archives of Microbiology
Daniel Pergament Persson, Anle Chen, Mark G M Aarts, David E Salt, Jan K Schjoerring, Søren Husted
Better understanding of root function is central for the development of plants with more efficient nutrient uptake and translocation. We here present a method for multielement bioimaging at the cellular level in roots of the genetic model system Arabidopsis (Arabidopsis thaliana). Using conventional protocols for microscopy, we observed that diffusible ions such as potassium and sodium were lost during sample dehydration. Thus, we developed a protocol that preserves ions in their native, cellular environment...
October 2016: Plant Physiology
Khurram Bashir, Sultana Rasheed, Takanori Kobayashi, Motoaki Seki, Naoko K Nishizawa
Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrient mineral elements for living organisms, as they regulate essential cellular processes, such as chlorophyll synthesis and photosynthesis (Fe, Cu, and Mn), respiration (Fe and Cu), and transcription (Zn). The storage and distribution of these minerals in various cellular organelles is strictly regulated to ensure optimal metabolic rates. Alteration of the balance in uptake, distribution, and/or storage of these minerals severely impairs cellular metabolism and significantly affects plant growth and development...
2016: Frontiers in Plant Science
Manuel González-Guerrero, Viviana Escudero, Ángela Saéz, Manuel Tejada-Jiménez
Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms...
2016: Frontiers in Plant Science
Dániel Benyó, Edit Horváth, Edit Németh, Tünde Leviczky, Kinga Takács, Nóra Lehotai, Gábor Feigl, Zsuzsanna Kolbert, Attila Ördög, Róbert Gallé, Jolán Csiszár, László Szabados, László Erdei, Ágnes Gallé
Plants have divergent defense mechanisms against the harmful effects of heavy metals present in excess in soils and groundwaters. Poplars (Populus spp.) are widely cultivated because of their rapid growth and high biomass production, and members of the genus are increasingly used as experimental model organisms of trees and for phytoremediation purposes. Our aim was to investigate the copper and zinc stress responses of three outstanding biomass producer bred poplar lines to identify such transcripts of genes involved in the detoxification mechanisms, which can play an important role in the protection against heavy metals...
August 20, 2016: Journal of Plant Physiology
Ye-Tao Tang, Christophe Cloquet, Teng-Hao-Bo Deng, Thibault Sterckeman, Guillaume Echevarria, Wen-Jun Yang, Jean-Louis Morel, Rong-Liang Qiu
On the basis of our previous field survey, we postulate that the pattern and degree of zinc (Zn) isotope fractionation in the Zn hyperaccumulator Noccaea caerulescens (J. & C. Presl) F. K. Mey may reflect a relationship between Zn bioavailability and plant uptake strategies. Here, we investigated Zn isotope discrimination during Zn uptake and translocation in N. caerulescens and in a nonaccumulator Thlaspi arvense L. with a contrasting Zn accumulation ability in response to low (Zn-L) and high (Zn-H) Zn supplies...
August 2, 2016: Environmental Science & Technology
Weitao Jia, Sulian Lv, Juanjuan Feng, Jihong Li, Yinxin Li, Shizhong Li
Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity...
September 2016: Environmental Science and Pollution Research International
Lene Irene Olsen, Thomas H Hansen, Camille Larue, Jeppe Thulin Østerberg, Robert D Hoffmann, Johannes Liesche, Ute Krämer, Suzy Surblé, Stéphanie Cadarsi, Vallerie Ann Samson, Daniel Grolimund, Søren Husted, Michael Palmgren
Insufficient intake of zinc and iron from a cereal-based diet is one of the causes of 'hidden hunger' (micronutrient deficiency), which affects some two billion people(1,2). Identifying a limiting factor in the molecular mechanism of zinc loading into seeds is an important step towards determining the genetic basis for variation of grain micronutrient content and developing breeding strategies to improve this trait(3). Nutrients are translocated to developing seeds at a rate that is regulated by transport processes in source leaves, in the phloem vascular pathway, and at seed sinks...
2016: Nature Plants
Weiwei Ding, Yanxia Wang, Weibo Fang, Si Gao, Xiaojuan Li, Kai Xiao
Transcription factors (TFs) play critical roles in mediating defense of plants to abiotic stresses through regulating downstream defensive genes. In this study, a wheat C2H2-ZFP (zinc finger protein) type TF gene designated as TaZAT8 was functionally characterized in mediating tolerance to the Pi-starvation stress. TaZAT8 bears conserved motifs harboring in the C2H2-ZFP type counterparts across vascular plant species. The expression of TaZAT8 was shown to be induced in roots upon Pi deprivation, with a Pi concentration- and temporal- dependent manner...
May 19, 2016: Physiologia Plantarum
Clemens Stolpe, Caroline Müller
When present at elevated levels in the environment, heavy metals are toxic for most organisms. However, so-called hyperaccumulator plants tolerate heavy metals and use chelators for their internal long-distance transport. Thus, phloem-sucking insects may come in contact with the chelated metals. In this study, the effects of individual and combined heavy metals, zinc and cadmium, as well as of common chelators, nicotianamine and phytochelatin, were investigated on the performance, preferences, and metal accumulation of the generalist aphid Myzus persicae, using artificial diets...
May 11, 2016: Environmental Toxicology and Chemistry
Suzhen Li, Xiaojin Zhou, Yongfeng Zhao, Hongbo Li, Yuanfeng Liu, Liying Zhu, Jinjie Guo, Yaqun Huang, Wenzhu Yang, Yunliu Fan, Jingtang Chen, Rumei Chen
Iron (Fe) and zinc (Zn) are important micronutrients for plant growth and development. Zinc-regulated transporters and the iron-regulated transporter-like protein (ZIP) are necessary for the homeostatic regulation of these metal micronutrients. In this study, the physiological function of ZmZIP7 which encodes a ZIP family transporter was characterized. We detected the expression profiles of ZmZIP7 in maize, and found that the accumulation of ZmZIP7 in root, stem, leaf, and seed was relatively higher than tassel and young ear...
September 2016: Plant Physiology and Biochemistry: PPB
Paulina Flis, Laurent Ouerdane, Louis Grillet, Catherine Curie, Stéphane Mari, Ryszard Lobinski
Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum...
August 2016: New Phytologist
Olga Olkhovych, Mykola Volkogon, Nataliya Taran, Lyudmyla Batsmanova, Inna Kravchenko
The paper covers the research of copper and zinc nanoparticle effect on the content of ascorbic acid, and quantitative and qualitative composition of amino acids and acylcarnitines in Pistia stratiotes L. plants. Plant exposition to copper nanoparticles led to the decrease in (1) the amount of ascorbic acid, (2) the total content of amino acids (by 25 %), and (3) the amount of all studied amino acids except for the glycine amino acid. At this, the amount of 5-oxoproline, arginine, leucine, ornithine, phenylalanine, proline, serine, and tyrosine was two times lower than in control plants...
December 2016: Nanoscale Research Letters
Chorpet Saenchai, Nadia Bouain, Mushtak Kisko, Chanakan Prom-U-Thai, Patrick Doumas, Hatem Rouached
Plants survival depends on their ability to cope with multiple nutrient stresses that often occur simultaneously, such as the limited availability of essential elements inorganic phosphate (Pi), zinc (Zn), and iron (Fe). Previous research has provided information on the genes involved in efforts by plants to maintain homeostasis when a single nutrient (Pi, Zn, or Fe) is depleted. Recent findings on nutritional stress suggest that plant growth capacity is influenced by a complex tripartite interaction between Pi, Zn, and Fe homeostasis...
2016: Frontiers in Plant Science
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"