Read by QxMD icon Read

Copper plant

Ursula Wierer, Simona Arrighi, Stefano Bertola, Günther Kaufmann, Benno Baumgarten, Annaluisa Pedrotti, Patrizia Pernter, Jacques Pelegrin
The Tyrolean Iceman, a 5,300-year-old glacier mummy recovered at the Tisenjoch (South Tyrol, Italy) together with his clothes and personal equipment, represents a unique opportunity for prehistoric research. The present work examines the Iceman's tools which are made from chert or are related to chert working - dagger, two arrowheads, endscraper, borer, small flake and antler retoucher - and considers also the arrowhead still embedded in the shoulder of the mummy. The interdisciplinary results achieved by study of the lithic raw material, technology, use-wear analysis, CT analysis and typology all add new information to Ötzi's individual history and his last days, and allow insights into the way of life of Alpine Copper Age communities...
2018: PloS One
U Axelson, M Söderström, A Jonsson
Molybdenum is toxic to ruminants when present in high levels in forage, causing physiological copper deficiency. A critical level for ruminants is 3-10 mg Mo kg-1 dry matter. The average Mo level varies considerably between different arable soils, depending mainly on soil parent material. This study investigated the possibility of using various existing sources of geospatial information (geophysical, biogeochemical and soil chemical) to develop a geography-based risk assessment system. Forage samples (n = 173) were collected in 2006-2007...
June 19, 2018: Environmental Geochemistry and Health
Suzanne A Apodaca, Illya A Medina-Velo, Alek C Lazarski, Juan P Flores-Margez, Jose R Peralta-Videa, Jorge L Gardea-Torresdey
The relationship between engineered nanomaterials and plant biostimulants is unclear. In this study, kidney bean (Phaseolus vulgaris) plants were grown to maturity (90 days) in soil amended with nano copper (nCu), bulk copper (bCu), or copper chloride (CuCl2 ) at 0, 50, or 100 mg kg-1 , then watered with 0, 10, or 100 μM of kinetin (KN). Seeds were harvested and analyzed via ICP-OES and biochemical assays. While seed production was largely unaffected, nutritional value was significantly impacted. Accumulation of Cu was enhanced by 5-10% from controls by Cu-based treatments...
September 15, 2018: Science of the Total Environment
Souhir Abdelkrim, Salwa Harzalli Jebara, Omar Saadani, Moez Jebara
The ability of Plant Growth Promoting Rhizobateria (PGPR) to enhance Lathyrus sativus tolerance to lead (Pb) stress was investigated. Ten consortia formed by mixing four efficient and Pb-resistant PGPR strains were assessed for their beneficial effect in improving Pb (0.5 mM) uptake and in inducing host-defensive system of L. sativus under hydroponic conditions based on various physiological and biochemical parameters. Pb stress significantly decreased shoot and root dry weight but inoculation improves these biomasses with highest increases registred in SDW and RDW of plants inoculated with I5 (R...
June 15, 2018: Plant Biology
Vilma Naujokienė, Egidijus Šarauskis, Kristina Lekavičienė, Aida Adamavičienė, Sidona Buragienė, Zita Kriaučiūnienė
The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines...
June 1, 2018: Science of the Total Environment
Daniel González-Mendoza, Rosalba Troncoso-Rojas, Tania Gonzalez-Soto, Onecimo Grimaldo-Juarez, Carlos Ceceña-Duran, Dagoberto Duran-Hernandez, Federico Gutierrez-Miceli
The aim of the present work is to evaluate the changes on the phenylalanine ammonia lyase (PAL) activity, phenolic compounds accumulation and photochemical efficiency in leaves of P. glandulosa treated with Cd2+ (0.001 M) and Cu2+ (0.52 M) concentrations for 96 h under hydroponic conditions. The results showed that only leaves treated with copper had a decrease in photochemical efficiency and leaf epidermal polyphenols in P. glandulosa leaves after 96 h of exposure. On the other hand the reverse-phase HPLC analysis revealed higher levels of phenolic compound (gallic, vanillic and caffeic acids) and flavonoids (rutin and kaempferol-3-O-glucosides) in plant leaves from Cu and Cd-treatments with respect to control plants...
April 2018: Anais da Academia Brasileira de Ciências
Matthias Frommhagen, Adrie H Westphal, Willem J H van Berkel, Mirjam A Kabel
Lytic polysaccharide monooxygenases (LPMOs) are powerful enzymes that oxidatively cleave glycosidic bonds in polysaccharides. The ability of these copper enzymes to boost the degradation of lignocellulose has greatly stimulated research efforts and biocatalytic applications within the biorefinery field. Initially found as oxidizing recalcitrant substrates, such as chitin and cellulose, it is now clear that LPMOs cleave a broad range of oligo- and poly-saccharides and make use of various electron-donating systems...
2018: Frontiers in Microbiology
Kun Wang, Si-Fu Tang, Xiaomin Hou
Accumulation of copper (II) ions in plant leads to the excessive reactive oxygen species (ROS) which attributes to the depletion of the antioxidants in the cell and destruction to antioxidant enzymes. The antioxidant enzyme glutathione peroxidase has been used as biomarkers to reflect metal-induced oxidative stress. However, the underlying toxic mechanisms of the copper ions(II)-induced oxidative damage to plants remain unknown. In the work, a detailed molecular interaction of copper (II) ions with Arabidopsis thaliana glutathione peroxidase 6 (AtGPX6) in relation with poisonous effects of exposure to heavy metal was investigated by multiple spectroscopic techniques...
May 28, 2018: Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Lan Li, Kangni Zhang, Rafaqat A Gill, Faisal Islam, Muhammad A Farooq, Jian Wang, Weijun Zhou
Heavy metal accumulation causes huge environmental problems, particularly in agricultural ecosystems which have deteriorative effects on the yield and quality of crops. Individual copper (Cu) and chromium (Cr) effects have been investigated extensively in plants; however, co-contamination of Cu and Cr induced stress on Brassica napus L. is still unclear. In the present experiment, the interactive effects of Cu and Cr were studied in two B. napus cultivars (Zheda 622 and ZS 758). Results showed that the application of Cr was more toxic than Cu, and their combined stress had shown a significant adverse effect on plant growth...
2018: BioMed Research International
Yu-Ki Tanaka, Takafumi Hirata
Stable isotope composition varies due to different reactivity or mobility among the isotopes. Various pioneering studies revealed that isotope fractionation is common for many elements, and it is now widely recognized that the stable isotope compositions of biometals can be used as new tracers for element metabolism. In this review, we summarize the recently published isotope compositions of iron (Fe), copper (Cu), zinc (Zn), and calcium (Ca) in various biological samples, including tissues from plants, animals, and humans...
2018: Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry
Jianxiang Feng, Yanyan Lin, Yao Yang, Qianqian Shen, Jianrong Huang, Shugong Wang, Xiaoshan Zhu, Zufu Li
Sesuvium portulacastrum was treated with mixture of copper, zinc, and cadmium for 60 days, with the concentration of each metal ranging from 0 to 20 mg/L. The tolerance of plants and bioaccumulation of heavy metals were then investigated. The height of S. portulacastrum decreased significantly with increasing heavy metal concentrations from 1 to 20 mg/L. The biomass was adversely impacted when the concentration exceeded 5 mg/L. There were no significant differences in malondialdehyde (MDA) concentration among different treatment groups, while the soluble protein content and superoxide dismutase (SOD) activity decreased with increasing heavy metal concentration...
June 2018: Marine Pollution Bulletin
P Alvarenga, C Ferreira, C Mourinha, P Palma, A de Varennes
The aim of this study was to evaluate the use of drinking-water treatment residuals (DWTR) in the amendment of a soil affected by mining activities (Aljustrel mine, Portuguese sector of the Iberian Pyrite Belt), considering the effects on its chemical, biochemical and ecotoxicological characteristics. The DWTR had neutral characteristics (pH 6.7) and an organic matter (OM) content of 575 g kg-1 dry matter (DM), which makes them a potential amendment for the remediation of mine degraded soils, as they may correct soil acidity and reduce the extractable metal fraction...
June 7, 2018: Ecotoxicology and Environmental Safety
Muhammad Naveed Iqbal, Rizwan Rasheed, Muhammad Yasin Ashraf, Muhammad Arslan Ashraf, Iqbal Hussain
Zinc or copper deficiency and salinity are known soil problems and often occur simultaneously in agriculture soils. Plants undergo various changes in physiological and biochemical processes to respond to high salt in the growing medium. There is lack of information on the relation of exogenous application of Zn and Cu with important salinity tolerance mechanisms in plants. Therefore, the present study was conducted to determine the effect of foliar Zn and Cu on two maize cultivars (salt-tolerant cv. Yousafwala Hybrid and salt-sensitive cv...
June 7, 2018: Environmental Science and Pollution Research International
Mikhail V Kozlov, Vitali Zverev
Fluctuating asymmetry (FA), which is defined as the magnitude of the random deviations from a symmetrical shape, reflects developmental instability and is commonly assumed to increase under environmental and genetic stress. We monitored the leaf FA of mountain birch, Betula pubescens subsp. czerepanovii, from 1993 to 2017 in individually marked trees at 21 sites around the copper‑nickel smelter at Monchegorsk, and we then analysed the results with respect to spatial and temporal variation in pollution, climate and background insect herbivory...
June 2, 2018: Science of the Total Environment
Dan Qing Feng, Jian He, Si Yu Chen, Pei Su, Cai Huan Ke, Wei Wang
The extensive use of copper and booster biocides in antifouling (AF) paints has raised environmental concerns and the need to develop new AF agents. In the present study, 18 alkaloids derived from terrestrial plants were initially evaluated for AF activity using laboratory bioassays with the bryozoan Bugula neritina and the barnacle Balanus albicostatus. The results showed that 4 of the 18 alkaloids were effective in inhibiting larval settlement of B. neritina, with an EC50 range of 6.18 to 43.11 μM, and 15 of the 18 alkaloids inhibited larval settlement of B...
June 2, 2018: Marine Biotechnology
Huihui Zhu, Honglian Ai, Liwen Cao, Ran Sui, Hengpeng Ye, Dongyun Du, Jie Sun, Jun Yao, Ke Chen, Liang Chen
Cadmium (Cd) is a severely toxic heavy metal and environmental pollutant. Tall fescue is a cold season turf grass which has high resistance to Cd as well as the ability to enrich it. To investigate the molecular mechanism underlying the adaptability of tall fescue to Cd stress, RNA-Seq was used to examine Cd stress responses of tall fescue at a transcriptional level. A total of 12 cDNA libraries were constructed from the total RNA of roots or leaves of tall fescue with or without Cd treatments. A total of 2594 (1768 up- and 826 down-regulated) differentially expressed genes (DEGs) were detected in the roots of Cd-stressed tall fescue compared with control roots (R_cd vs R_ck), while only 52 (29 up- and 23 down-regulated) DEGs were found in the leaves of Cd-stressed plants versus the controls (L_cd vs L_ck)...
September 30, 2018: Ecotoxicology and Environmental Safety
E David Thompson, Christer Hogstrand, Chris N Glover
The hyperaccumulation of trace elements is a widely characterized phenomenon in plants, bacteria, and fungi, but has received little attention in animals. However, there are numerous examples of animals that specifically and facultatively accumulate trace elements in the absence of elevated environmental concentrations. Metal hyperaccumulating animals are usually marine invertebrates, likely owing to environmental (e.g. constant exposure via the water) and physiological (e.g. osmoconforming and reduced integument permeability) factors...
May 31, 2018: Metallomics: Integrated Biometal Science
Rahul Dandautiya, Ajit Pratap Singh, Sanghamitra Kundu
The fly ash, generated at the coal-based thermal power plant, is always a cause of concern to environmentalists owing to its adverse impact on air, water and land. There exists a high environmental risk when it is disposed to the environment. Thus, two different type of fly ash samples (FA-1 and FA-2) have been considered in this study to examine the leaching potential of the elements magnesium, aluminium, silicon, calcium, titanium, vanadium, chromium, manganese, iron, nickel, cobalt, copper, zinc, arsenic, selenium, strontium, cadmium, barium and lead for different types of leachant...
May 1, 2018: Waste Management & Research
Yajin Ye, Yang Zhao
Active molecules uncovered through chemical genetics studies have provided unique molecular genetic tools with which to study specific life processes. Different strategies have been developed to study the modes of action of these small molecules, especially for the target identification, including affinity chromatography (for target identification) and genetic/genomic methods. In this chapter we describe the protocols for a conventional forward genetics screening against seed germination inhibitors to study their working mechanism in model plant Arabidopsis...
2018: Methods in Molecular Biology
Fang Yun Lim, Tae Hyung Won, Nicholas Raffa, Joshua A Baccile, Jen Wisecaver, Antonis Rokas, Frank C Schroeder, Nancy P Keller
Microbial secondary metabolites, including isocyanide moieties, have been extensively mined for their repertoire of bioactive properties. Although the first naturally occurring isocyanide (xanthocillin) was isolated from the fungus Penicillium notatum over half a century ago, the biosynthetic origins of fungal isocyanides remain unknown. Here we report the identification of a family of isocyanide synthases (ICSs) from the opportunistic human pathogen Aspergillus fumigatus Comparative metabolomics of overexpression or knockout mutants of ICS candidate genes led to the discovery of a fungal biosynthetic gene cluster (BGC) that produces xanthocillin ( xan )...
May 29, 2018: MBio
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"