Read by QxMD icon Read

Feedforward Inhibition

Frederic Pouille, Nathan E Schoppa
Recent studies have provided evidence that corticofugal feedback (CFF) from the olfactory cortex to the olfactory bulb (OB) can significantly impact the state of excitation of output mitral cells (MCs) and tufted cells (TCs) and also modulate neural synchrony. Interpreting these effects however has been complicated by the large number of cell targets of CFF axons in the bulb. Within the granule cell layer (GCL) alone, CFF axons target both GABAergic granule cells (GCs) as well as GABAergic deep short-axon cells (dSACs) that inhibit GCs...
2018: Frontiers in Cellular Neuroscience
Fabien Cignetti, Marianne Vaugoyeau, Aurelie Fontan, Marianne Jover, Marie-Odile Livet, Catherine Hugonenq, Frédérique Audic, Brigitte Chabrol, Christine Assaiante
BACKGROUND AND AIM: Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. METHODS: Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm...
March 13, 2018: Research in Developmental Disabilities
Nannan Guo, Marta E Soden, Charlotte Herber, Michael TaeWoo Kim, Antoine Besnard, Paoyan Lin, Xiang Ma, Constance L Cepko, Larry S Zweifel, Amar Sahay
Memories become less precise and generalized over time as memory traces reorganize in hippocampal-cortical networks. Increased time-dependent loss of memory precision is characterized by an overgeneralization of fear in individuals with post-traumatic stress disorder (PTSD) or age-related cognitive impairments. In the hippocampal dentate gyrus (DG), memories are thought to be encoded by so-called 'engram-bearing' dentate granule cells (eDGCs). Here we show, using rodents, that contextual fear conditioning increases connectivity between eDGCs and inhibitory interneurons (INs) in the downstream hippocampal CA3 region...
March 12, 2018: Nature Medicine
Rui Zhen Tan, Keng-Hwee Chiam
Cell size is thought to play an important role in choosing between temporal and spatial sensing in chemotaxis. Large cells are thought to use spatial sensing due to large chemical difference at its ends whereas small cells are incapable of spatial sensing due to rapid homogenization of proteins within the cell. However, small cells have been found to polarize and large cells like sperm cells undergo temporal sensing. Thus, it remains an open question what exactly governs spatial versus temporal sensing. Here, we identify the factors that determines sensing choices through mathematical modeling of chemotactic circuits...
March 5, 2018: PLoS Computational Biology
José R Donoso, Dietmar Schmitz, Nikolaus Maier, Richard Kempter
Hippocampal ripples are involved in memory consolidation, but the mechanisms underlying their generation remain unclear. Models relying on interneuron networks in the CA1 region disagree on the predominant source of excitation to interneurons: either 'direct', via the Schaffer collaterals that provide feedforward input from CA3 to CA1, or 'indirect', via the local pyramidal cells in CA1, which are embedded in a recurrent excitatory-inhibitory network. Here, we used physiologically constrained computational models of basket-cell networks to investigate how they respond to different conditions of transient, noisy excitation...
February 16, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Scott F Owen, Joshua D Berke, Anatol C Kreitzer
Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs)...
February 8, 2018: Cell
Joanna Urban-Ciecko, Jean-Sebastien Jouhanneau, Stephanie E Myal, James F A Poulet, Alison L Barth
Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons...
February 7, 2018: Neuron
Daoxiang Zhang, Lin Li, Hongmei Jiang, Qiong Li, Andrea Wang-Gillam, Jinsheng Yu, Richard Head, Jingxia Liu, Marianna B Ruzinova, Kian-Huat Lim
Targeting the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) holds promise to augment the effect of chemotherapy, but success in the clinic has thus far been limited. Preclinical mouse models suggest that near-depletion of cancer-associated fibroblasts (CAF) carries a risk of accelerating PDAC progression, underscoring the need to concurrently target key signaling mechanisms that drive the malignant attributes of both CAF and PDAC cells. We previously reported that inhibition of interleukin-1 receptor associated kinase 4 (IRAK4) suppresses NF-κB activity and promotes response to chemotherapy in PDAC cells...
January 23, 2018: Cancer Research
Paul G Anastasiades, Joseph J Marlin, Adam G Carter
Excitation and inhibition are highly specific in the cortex, with distinct synaptic connections made onto subtypes of projection neurons. The functional consequences of this selective connectivity depend on both synaptic strength and the intrinsic properties of targeted neurons but remain poorly understood. Here, we examine responses to callosal inputs at cortico-cortical (CC) and cortico-thalamic (CT) neurons in layer 5 of mouse prelimbic prefrontal cortex (PFC). We find callosally evoked excitation and feedforward inhibition are much stronger at CT neurons compared to neighboring CC neurons...
January 16, 2018: Cell Reports
Janske G P Willems, Wytse J Wadman, Natalie L M Cappaert
The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER-LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance...
January 17, 2018: Hippocampus
Yael Oran, Izhar Bar-Gad
Fast-spiking interneurons (FSIs) exert powerful inhibitory control over the striatum and are hypothesized to balance the massive excitatory cortical and thalamic input to this structure. We recorded neuronal activity in the dorsolateral striatum and globus pallidus (GP) concurrently with the detailed movement kinematics of freely behaving female rats before and after selective inhibition of FSI activity using IEM-1460 microinjections. The inhibition led to the appearance of episodic rest tremor in the body part that depended on the somatotopic location of the injection within the striatum...
February 14, 2018: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Christos Ganos, Elisa R Ferrè, Angela Marotta, Panagiotis Kassavetis, John Rothwell, Kailash P Bhatia, Patrick Haggard
OBJECTIVE: To assess the specificity of cortical inhibitory deficits in cervical dystonia patients. METHODS: A systematic test battery was developed to assess spatial and temporal aspects of cortical inhibition, in motor and somatosensory systems of the hand. We tested 17 cervical dystonia (CD) patients and 19 controls assessing somatosensory spatial inhibition (grating orientation test, interdigital feedforward subliminal inhibition), somatosensory temporal inhibition (temporal discrimination threshold, feedforward subliminal inhibition), motor spatial inhibition (surround inhibition), and motor temporal inhibition (short interval intracortical inhibition)...
December 1, 2017: Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology
Weiwei Cheng, Shaopeng Wang, Alexander A Mestre, Chenglai Fu, Andres Makarem, Fengfan Xian, Lindsey R Hayes, Rodrigo Lopez-Gonzalez, Kevin Drenner, Jie Jiang, Don W Cleveland, Shuying Sun
Hexanucleotide repeat expansion in C9ORF72 is the most frequent cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we demonstrate that the repeat-associated non-AUG (RAN) translation of (GGGGCC) n -containing RNAs into poly-dipeptides can initiate in vivo without a 5'-cap. The primary RNA substrate for RAN translation of C9ORF72 sense repeats is shown to be the spliced first intron, following its excision from the initial pre-mRNA and transport to the cytoplasm. Cap-independent RAN translation is shown to be upregulated by various stress stimuli through phosphorylation of the α subunit of eukaryotic initiation factor-2 (eIF2α), the core event of an integrated stress response (ISR)...
January 4, 2018: Nature Communications
Ming Yue, Jue Jiang, Peng Gao, Hudan Liu, Guoliang Qing
Most tumor cells exhibit obligatory demands for essential amino acids (EAAs), but the regulatory mechanisms whereby tumor cells take up EAAs and EAAs promote malignant transformation remain to be determined. Here, we show that oncogenic MYC, solute carrier family (SLC) 7 member 5 (SLC7A5), and SLC43A1 constitute a feedforward activation loop to promote EAA transport and tumorigenesis. MYC selectively activates Slc7a5 and Slc43a1 transcription through direct binding to specific E box elements within both genes, enabling effective EAA import...
December 26, 2017: Cell Reports
Antonius L van Boxtel, Andrew D Economou, Claire Heliot, Caroline S Hill
Specification of the three germ layers by graded Nodal signaling has long been seen as a paradigm for patterning through a single morphogen gradient. However, by exploiting the unique properties of the zebrafish embryo to capture the dynamics of signaling and cell fate allocation, we now demonstrate that Nodal functions in an incoherent feedforward loop, together with Fgf, to determine the pattern of endoderm and mesoderm specification. We show that Nodal induces long-range Fgf signaling while simultaneously inducing the cell-autonomous Fgf signaling inhibitor Dusp4 within the first two cell tiers from the margin...
December 20, 2017: Developmental Cell
Fatima Abbas, Marcus A Triplett, Geoffrey J Goodhill, Martin P Meyer
The circuit mechanisms that give rise to direction selectivity in the retina have been studied extensively but how direction selectivity is established in retinorecipient areas of the brain is less well understood. Using functional imaging in larval zebrafish we examine how the direction of motion is encoded by populations of neurons at three layers of the optic tectum; retinal ganglion cell axons (RGCs), a layer of superficial inhibitory interneurons (SINs), and periventricular neurons (PVNs), which constitute the majority of neurons in the tectum...
2017: Frontiers in Neural Circuits
N F Hardy, Dean V Buonomano
Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor processing, behavior, and learning and memory. Therefore, understanding the temporal nature of neural dynamics is essential to understanding brain function and behavior. In vivo studies have demonstrated that sequential transient activation of neurons can encode time. However, it remains unclear whether these patterns emerge from feedforward network architectures or from recurrent networks and, furthermore, what role network structure plays in timing...
November 21, 2017: Neural Computation
Claire Gizowski, Charles W Bourque
Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network...
January 2018: Nature Reviews. Nephrology
Mainak Patel
The spiking of barrel regular-spiking (RS) cells is tuned for both whisker deflection direction and velocity. Velocity tuning arises due to thalamocortical (TC) synchrony (but not spike quantity) varying with deflection velocity, coupled with feedforward inhibition, while direction selectivity is not fully understood, though may be due partly to direction tuning of TC spiking. Data show that as deflection direction deviates from the preferred direction of an RS cell, excitatory input to the RS cell diminishes minimally, but temporally shifts to coincide with the time-lagged inhibitory input...
January 15, 2018: Neuroscience
Santhosh Sethuramanujam, Xiaoyang Yao, Geoff deRosenroll, Kevin L Briggman, Greg D Field, Gautam B Awatramani
Retinal direction-selective ganglion cells (DSGCs) have the remarkable ability to encode motion over a wide range of contrasts, relying on well-coordinated excitation and inhibition (E/I). E/I is orchestrated by a diverse set of glutamatergic bipolar cells that drive DSGCs directly, as well as indirectly through feedforward GABAergic/cholinergic signals mediated by starburst amacrine cells. Determining how direction-selective responses are generated across varied stimulus conditions requires understanding how glutamate, acetylcholine, and GABA signals are precisely coordinated...
December 6, 2017: Neuron
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"