Read by QxMD icon Read


Blake J Bleier, Shelley L Anna, Lynn M Walker
The goal of this work is to develop a simple microfluidic approach to characterizing liquid-liquid phase behavior in complex aqueous mixtures of organics and salts. We take advantage of the permeability of inexpensive microfluidic devices to concentrate aqueous solutions on chip. We demonstrate a technique that allows phase boundaries to be identified with high compositional resolution and small sample volumes. Droplets of single phase samples are produced on-chip and concentrated in the device beyond the phase boundary line to map system phase behavior...
March 16, 2018: Journal of Physical Chemistry. B
Qingqing Wei, Ruiqi Li, Liang Zhong, Haiyuan Mu, Shaopeng Zhang, Liang Yue, Jinzhu Xiang, Enhong Li, Minglei Zhi, Suying Cao, Jianyong Han
After zygotic genome activation and lineage specification, zygotes develop into late blastocysts comprising three distinct cell types. The molecular mechanisms underlying this progress are largely unknown in pigs. Here, we intended to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the porcine blastocysts. Using a quantitative microfluidics approach in single cells, we detected mRNA levels of 96 genes known to function in early embryonic development and maintenance of stem cell pluripotency simultaneously in 480 individual cells derived from porcine preimplantation embryos...
March 13, 2018: Biology of Reproduction
Guanghui Wang, Jie Tan, Minghui Tang, Changbin Zhang, Dongying Zhang, Wenbin Ji, Junhao Chen, Ho-Pui Ho, Xuping Zhang
Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform...
March 16, 2018: Lab on a Chip
Cheleka A M Mpande, One B Dintwe, Munyaradzi Musvosvi, Simbarashe Mabwe, Nicole Bilek, Mark Hatherill, Elisa Nemes, Thomas J Scriba
Background: Maintenance of long-lasting immunity is thought to depend on stem cell memory T cells (TSCM ), which have superior self-renewing capacity, longevity and proliferative potential compared with central memory (TCM ) or effector (TEFF ) T cells. Our knowledge of TSCM derives primarily from studies of virus-specific CD8+ TSCM . We aimed to determine if infection with Mycobacterium tuberculosis ( M. tb ), the etiological agent of tuberculosis, generates antigen-specific CD4+ TSCM and to characterize their functional ontology...
2018: Frontiers in Immunology
Bivas Panigrahi, Chang-Hung Lu, Neha Ghayal, Chia-Yuan Chen
The zebrafish sperm activation profoundly depends upon the homogeneous mixing of the sperm cells with its diluent in a quick succession as it alters the cell's extracellular medium and initiates their motility. Manual stirring, the traditional method for zebrafish sperm activation is tedious, time-consuming, and has a poor outcome. In this aspect, an artificial cilia embedded serpentine microfluidic is designed through which hydrodynamic factors of the microfluidic environment can be precisely regulated to harness uniform mixing, hence ensuring a superior sperm activation...
March 15, 2018: Scientific Reports
Mandy Hei Man Leung, Amy Q Shen
The ability to control particle size and size distribution of nanoparticles for drug delivery is essential because it impacts on the biodistribution and cellular uptake of nanoparticles. We present a novel microfluidic assisted nanoprecipitation strategy that enables synthesis of surfactant-free curcumin encapsulated poly(lactide-co-glycolide) nanoparticles (Cur-PLGA NP) with adjustable particle diameters (30-70nm) and narrow particle size distribution (polydispersity index less than 0.2). Our Cur-PLGA NP exhibit excellent colloidal stability and inhibit degradation of curcumin...
March 15, 2018: Langmuir: the ACS Journal of Surfaces and Colloids
Sheng Yan, Yuxing Li, Yuanqing Zhu, Minsu Liu, Qianbin Zhao, Dan Yuan, Guolin Yun, Shiwu Zhang, Weijia Wen, Shi-Yang Tang, Weihua Li
This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mould using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate (PMMA) frame and machine screws to create miniaturised, portable microfluidic valves for sequential liquid delivery and particle synthesis...
March 15, 2018: Electrophoresis
Christopher J Lambert, Briana C Freshner, Arlen Chung, Tamara J Stevenson, D Miranda Bowles, Raheel Samuel, Bruce K Gale, Joshua L Bonkowsky
Zebrafish are a valuable model organism in biomedical research. Their rapid development, ability to model human diseases, utility for testing genetic variants identified from next-generation sequencing, amenity to CRISPR mutagenesis, and potential for therapeutic compound screening, has led to their wide-spread adoption in diverse fields of study. However, their power for large-scale screens is limited by the absence of automated genotyping tools for live animals. This constrains potential drug screen options, limits analysis of embryonic and larval phenotypes, and requires raising additional animals to adulthood to ensure obtaining an animal of the desired genotype...
2018: PloS One
Benzhong Zhao, Amir Alizadeh Pahlavan, Luis Cueto-Felgueroso, Ruben Juanes
Immiscible fluid-fluid displacement in partial wetting continues to challenge our microscopic and macroscopic descriptions. Here, we study the displacement of a viscous fluid by a less viscous fluid in a circular capillary tube in the partial wetting regime. In contrast with the classic results for complete wetting, we show that the presence of a moving contact line induces a wetting transition at a critical capillary number that is contact angle dependent. At small displacement rates, the fluid-fluid interface deforms slightly from its equilibrium state and moves downstream at a constant velocity, without changing its shape...
February 23, 2018: Physical Review Letters
David J Collins, Richard O'Rorke, Citsabehsan Devendran, Zhichao Ma, Jongyoon Han, Adrian Neild, Ye Ai
Acoustic fields have been widely used for manipulation of particles and cells within microfluidic systems. In this Letter, we explore a novel acoustofluidic phenomenon for particle patterning and focusing, where a periodic acoustic pressure field is produced parallel to internal channel boundaries with the imposition of either a traveling or standing surface acoustic wave (SAW). This effect results from the propagation and intersection of edge waves from the channel walls according to the Huygens-Fresnel principle and classical wave fronts from the substrate-fluid interface...
February 16, 2018: Physical Review Letters
Zhao Pan, Floriane Weyer, William G Pitt, Nicolas Vandewalle, Tadd T Truscott
Inspired by the huge droplets attached on cypress tree leaf tips after rain, we find that a bent fibre can hold significantly more water in the corner than a horizontally placed fibre (typically up to three times or more). The maximum volume of the liquid that can be trapped is remarkably affected by the bending angle of the fibre and surface tension of the liquid. We experimentally find the optimal included angle (∼36°) that holds the most water. Analytical and semi-empirical models are developed to explain these counter-intuitive experimental observations and predict the optimal angle...
March 15, 2018: Soft Matter
Aleta Pupovac, Berna Senturk, Chiara Griffoni, Katharina Maniura-Weber, Markus Rottmar, Sally L McArthur
3D human skin models provide a platform for toxicity testing, biomaterials evaluation, and investigation of fundamental biological processes. However, the majority of current in vitro models lack an inflammatory system, vasculature, and other characteristics of native skin, indicating scope for more physiologically complex models. Looking at the immune system, there are a variety of cells that could be integrated to create novel skin models, but to do this effectively it is also necessary to understand the interface between skin biology and tissue engineering as well as the different roles the immune system plays in specific health and disease states...
March 15, 2018: Advanced Healthcare Materials
Evan Tan, Harry H Asada, Ruowen Ge
NOTCH signalling is an evolutionarily conserved juxtacrine signalling pathway that is essential in development. Jagged1 (JAG1) and Delta-like ligand 4 (DLL4) are transmembrane NOTCH ligands that regulate angiogenesis by controlling endothelial cell (EC) differentiation, vascular development and maturation. In addition, DLL4 could bypass its canonical cell-cell contact-dependent signalling to influence NOTCH signalling and angiogenesis at a distance when it is packaged into extracellular vesicles (EVs). However, it is not clear whether JAG1 could also be packaged into EVs to influence NOTCH signalling and angiogenesis...
March 14, 2018: Angiogenesis
Yuanyuan Fan, Defang Dong, Qingling Li, Haibin Si, Haimeng Pei, Lu Li, Bo Tang
Single-cell analysis of bioactive molecules is an essential strategy for a better understanding of cell biology, exploring cell heterogeneity, and improvement of the ability to detect early diseases. In single-cell analysis, highly efficient single-cell manipulation techniques and high-sensitive detection schemes are in urgent need. The rapid development of fluorescent analysis techniques combined with microfluidic chips have offered a widely applicable solution. Thus, in this review, we mainly focus on the application of fluorescence methods in components analysis on microchips at a single-cell level...
March 15, 2018: Lab on a Chip
Georges Hattab, Veit Wiesmann, Anke Becker, Tamara Munzner, Tim W Nattkemper
Time-lapse imaging of cell colonies in microfluidic chambers provides time series of bioimages, i.e., biomovies. They show the behavior of cells over time under controlled conditions. One of the main remaining bottlenecks in this area of research is the analysis of experimental data and the extraction of cell growth characteristics, such as lineage information. The extraction of the cell line by human observers is time-consuming and error-prone. Previously proposed methods often fail because of their reliance on the accurate detection of a single cell, which is not possible for high density, high diversity of cell shapes and numbers, and high-resolution images with high noise...
2018: Frontiers in Bioengineering and Biotechnology
Lothar Schmid, Thomas Franke
We show that a microfluidic flow focusing drop maker can be synchronized to a surface acoustic waves (SAW) triggered by an external electric signal. In this way droplet rate and volume can be controlled over a wide range of values in real time. Using SAW, the drop formation rate of a regularly operating water in oil drop maker without SAW can be increased by acoustically enforcing the drop pinch-off and thereby reducing the volume. Drop makers of square cross-sections (w = h = 30 µm, with width w and height h) that produce large drops of length l = 10 w can be triggered to produce drops as short as l ~ 2w, approaching the geometical limit l = w without changing the flow rates...
March 14, 2018: Scientific Reports
Yuval Elani, Tatiana Trantidou, Douglas Wylie, Linda Dekker, Karen Polizzi, Robert V Law, Oscar Ces
There is increasing interest in constructing artificial cells by functionalising lipid vesicles with biological and synthetic machinery. Due to their reduced complexity and lack of evolved biochemical pathways, the capabilities of artificial cells are limited in comparison to their biological counterparts. We show that encapsulating living cells in vesicles provides a means for artificial cells to leverage cellular biochemistry, with the encapsulated cells serving organelle-like functions as living modules inside a larger synthetic cell assembly...
March 14, 2018: Scientific Reports
Collin D Edington, Wen Li Kelly Chen, Emily Geishecker, Timothy Kassis, Luis R Soenksen, Brij M Bhushan, Duncan Freake, Jared Kirschner, Christian Maass, Nikolaos Tsamandouras, Jorge Valdez, Christi D Cook, Tom Parent, Stephen Snyder, Jiajie Yu, Emily Suter, Michael Shockley, Jason Velazquez, Jeremy J Velazquez, Linda Stockdale, Julia P Papps, Iris Lee, Nicholas Vann, Mario Gamboa, Matthew E LaBarge, Zhe Zhong, Xin Wang, Laurie A Boyer, Douglas A Lauffenburger, Rebecca L Carrier, Catherine Communal, Steven R Tannenbaum, Cynthia L Stokes, David J Hughes, Gaurav Rohatgi, David L Trumper, Murat Cirit, Linda G Griffith
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs...
March 14, 2018: Scientific Reports
Jonathan V Martin, David M Liberati, Lawrence N Diebel
BACKGROUND: Hypernatremia is a common problem affecting critically ill patients, whether due to underlying pathology or the subsequent result of hypertonic fluid resuscitation. Numerous studies have been published suggesting that hypernatremia may adversely affect the vascular endothelial glycocalyx. Our study aimed to evaluate if high sodium concentration would impair the endothelial and glycocalyx barrier function and if stress conditions that simulate the shock microenvironment would exacerbate any observed adverse effects of hypernatremia...
March 12, 2018: Journal of Trauma and Acute Care Surgery
Sanne L N Brouns, Johanna P van Geffen, Johan W M Heemskerk
In recent years, considerable progress has been made in understanding the mechanisms involved in platelet activation during hemostasis and thrombosis. Parallel-plate flow chambers and other microfluidic devices have markedly contributed to this insight. Conversely, such flow devices are now increasingly used to monitor the combined processes of platelet aggregation, thrombus formation, and coagulation in human blood. Currently, by combining microspotting and multi-color fluorescence microscopy, this technology offers the capability of high-throughput measurement of platelet activation processes, even in small blood samples...
March 14, 2018: Platelets
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"