Read by QxMD icon Read

Inherited erythromelalgia

Andreas M Kist, Dagrun Sagafos, Anthony M Rush, Cristian Neacsu, Esther Eberhardt, Roland Schmidt, Lars Kristian Lunden, Kristin Ørstavik, Luisa Kaluza, Jannis Meents, Zhiping Zhang, Thomas Hedley Carr, Hugh Salter, David Malinowsky, Patrik Wollberg, Johannes Krupp, Inge Petter Kleggetveit, Martin Schmelz, Ellen Jørum, Angelika Lampert, Barbara Namer
Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.8 or Nav1.9, were recently connected with inherited chronic pain syndromes. Here, we investigated the effects of the p.M650K mutation in Nav1.8 in a 53 year old patient with erythromelalgia by microneurography and patch-clamp techniques. Recordings of the patient's peripheral nerve fibers showed increased activity dependent slowing (ADS) in CMi and less spontaneous firing compared to a control group of erythromelalgia patients without Nav mutations...
2016: PloS One
Yang Yang, Jianying Huang, Malgorzata A Mis, Mark Estacion, Lawrence Macala, Palak Shah, Betsy R Schulman, Daniel B Horton, Sulayman D Dib-Hajj, Stephen G Waxman
UNLABELLED: Voltage-gated sodium channel Nav1.7 is a central player in human pain. Mutations in Nav1.7 produce several pain syndromes, including inherited erythromelalgia (IEM), a disorder in which gain-of-function mutations render dorsal root ganglia (DRG) neurons hyperexcitable. Although patients with IEM suffer from episodes of intense burning pain triggered by warmth, the effects of increased temperature on DRG neurons expressing mutant Nav1.7 channels have not been well documented...
July 13, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Sarah Crunkhorn
No abstract text is available yet for this article.
June 1, 2016: Nature Reviews. Drug Discovery
Wei Ge, Bin Wei, Hao Zhu, Zhigang Miao, Weimin Zhang, Cuihua Leng, Jizhen Li, Dan Zhang, Miao Sun, Xingshun Xu
PURPOSE: Fabry disease is an X-linked genetic disorder caused by the mutations of alpha-galactosidase A (GLA, MIM 300644) gene presenting with various clinical symptoms including small-fiber peripheral neuropathy and limb burning pain. Here, we reported a Chinese pedigree with the initial diagnosis of primary erythromelalgia in an autosomal dominant (AD)-inherited pattern. METHODS: Mutation analysis of SCN9A and GLA genes by direct sequencing and functional analysis of a novel mutation of GLA in cells were performed...
May 22, 2016: International Journal of Neuroscience
Martin Hampl, Esther Eberhardt, Andrias O O'Reilly, Angelika Lampert
Mutations in the voltage-gated sodium channel Nav1.7 are linked to inherited pain syndromes such as erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). PEPD mutations impair Nav1.7 fast inactivation and increase persistent currents. PEPD mutations also increase resurgent currents, which involve the voltage-dependent release of an open channel blocker. In contrast, IEM mutations, whenever tested, leave resurgent currents unchanged. Accordingly, the IEM deletion mutation L955 (ΔL955) fails to produce resurgent currents despite enhanced persistent currents, which have hitherto been considered a prerequisite for resurgent currents...
2016: Scientific Reports
Lishuang Cao, Aoibhinn McDonnell, Anja Nitzsche, Aristos Alexandrou, Pierre-Philippe Saintot, Alexandre J C Loucif, Adam R Brown, Gareth Young, Malgorzata Mis, Andrew Randall, Stephen G Waxman, Philip Stanley, Simon Kirby, Sanela Tarabar, Alex Gutteridge, Richard Butt, Ruth M McKernan, Paul Whiting, Zahid Ali, James Bilsland, Edward B Stevens
In common with other chronic pain conditions, there is an unmet clinical need in the treatment of inherited erythromelalgia (IEM). TheSCN9Agene encoding the sodium channel Nav1.7 expressed in the peripheral nervous system plays a critical role in IEM. A gain-of-function mutation in this sodium channel leads to aberrant sensory neuronal activity and extreme pain, particularly in response to heat. Five patients with IEM were treated with a new potent and selective compound that blocked the Nav1.7 sodium channel resulting in a decrease in heat-induced pain in most of the patients...
April 20, 2016: Science Translational Medicine
Paul Geha, Yang Yang, Mark Estacion, Betsy R Schulman, Hajime Tokuno, A Vania Apkarian, Sulayman D Dib-Hajj, Stephen G Waxman
IMPORTANCE: There is a need for more effective pharmacotherapy for chronic pain, including pain in inherited erythromelalgia (IEM) in which gain-of-function mutations of sodium channel NaV1.7 make dorsal root ganglion (DRG) neurons hyperexcitable. OBJECTIVE: To determine whether pain in IEM can be attenuated via pharmacotherapy guided by genomic analysis and functional profiling. DESIGN, SETTING, AND PARTICIPANTS: Pain in 2 patients with IEM due to the NaV1...
June 1, 2016: JAMA Neurology
Aoibhinn McDonnell, Betsy Schulman, Zahid Ali, Sulayman D Dib-Hajj, Fiona Brock, Sonia Cobain, Tina Mainka, Jan Vollert, Sanela Tarabar, Stephen G Waxman
Inherited erythromelalgia, the first human pain syndrome linked to voltage-gated sodium channels, is widely regarded as a genetic model of human pain. Because inherited erythromelalgia was linked to gain-of-function changes of sodium channel Na(v)1.7 only a decade ago, the literature has mainly consisted of reports of genetic and/or clinical characterization of individual patients. This paper describes the pattern of pain, natural history, somatosensory profile, psychosocial status and olfactory testing of 13 subjects with primary inherited erythromelalgia with mutations of SCN9A, the gene encoding Na(v)1...
April 2016: Brain: a Journal of Neurology
Zhaoli Tang, Zhao Chen, Beisha Tang, Hong Jiang
Primary erythromelalgia (PE ORPHA90026) is a rare autosomal dominant neuropathy characterized by the combination of recurrent burning pain, warmth and redness of the extremities. The incidence rate of PE ranges from 0.36 to 1.1 per 100,000 persons. Gender ratio differs according to different studies and no evidence showed a gender preference. Clinical onset of PE is often in the first decade of life. Burning pain is the most predominant symptom and is usually caused and precipitated by warmth and physical activities...
2015: Orphanet Journal of Rare Diseases
Jennifer Koenig, Robert Werdehausen, John E Linley, Abdella M Habib, Jeffrey Vernon, Stephane Lolignier, Niels Eijkelkamp, Jing Zhao, Andrei L Okorokov, C Geoffrey Woods, John N Wood, James J Cox
The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a...
2015: PloS One
Edward C Emery, Abdella M Habib, James J Cox, Adeline K Nicholas, Fiona M Gribble, C Geoffrey Woods, Frank Reimann
The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP)...
May 20, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Frank L Rice, Phillip J Albrecht, James P Wymer, Joel A Black, Ingemar Sj Merkies, Catharina G Faber, Stephen G Waxman
BACKGROUND: The skin is a morphologically complex organ that serves multiple complementary functions, including an important role in thermoregulation, which is mediated by a rich vasculature that is innervated by sympathetic and sensory endings. Two autosomal dominant disorders characterized by episodes of severe pain, inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD) have been directly linked to mutations that enhance the function of sodium channel Nav1.7. Pain attacks are accompanied by reddening of the skin in both disorders...
2015: Molecular Pain
Mohamed-Yassine Amarouch, Hugues Abriel
Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels...
2015: Frontiers in Physiology
Theresa Stadler, Andrias O O'Reilly, Angelika Lampert
The human voltage-gated sodium channel Nav1.7 plays a crucial role in transmission of noxious stimuli. The inherited pain disorder erythromelalgia (IEM) has been linked to Nav1.7 gain-of-function mutations. Here we show that the IEM-associated Q875E mutation located on the pore module of Nav1.7 produces a large hyperpolarizing shift (-18 mV) in the voltage dependence of activation. Three-dimensional homology modeling indicates that the side chains of Gln-875 and the gating charge Arg-214 of the domain I voltage sensor are spatially close in the activated conformation of the channel...
March 6, 2015: Journal of Biological Chemistry
Brigitte A Brouwer, Ingemar S J Merkies, Monique M Gerrits, Stephen G Waxman, Janneke G J Hoeijmakers, Catharina G Faber
Pain is a frequent debilitating feature reported in peripheral neuropathies with involvement of small nerve (Aδ and C) fibers. Voltage-gated sodium channels are responsible for the generation and conduction of action potentials in the peripheral nociceptive neuronal pathway where NaV 1.7, NaV 1.8, and NaV 1.9 sodium channels (encoded by SCN9A, SCN10A, and SCN11A) are preferentially expressed. The human genetic pain conditions inherited erythromelalgia and paroxysmal extreme pain disorder were the first to be linked to gain-of-function SCN9A mutations...
June 2014: Journal of the Peripheral Nervous System: JPNS
Marcus E Petersson, Otilia Obreja, Angelika Lampert, Richard W Carr, Martin Schmelz, Erik Fransén
Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres...
2014: PloS One
J Thomas, B V Maramattom, P M Kuruvilla, J Varghese
Erythromelalgia is a rare disorder that simulates a small fiber neuropathy and patients often have painful erythematous extremities during episodes. It is of two types: A primary or inherited form that is sometimes associated with a Na channel mutation or a secondary disorder associated with an underlying systemic disorder. We present a 19-year-old boy who presented to us with erythromelalgia and a febrile illness with systemic rash. Detailed work-up revealed another unusual condition: Subcutaneous panniculitis like T cell lymphoma (SPTCL)...
July 2014: Journal of Postgraduate Medicine
David L H Bennett, C Geoffrey Woods
The discovery of genetic variants that substantially alter an individual's perception of pain has led to a step-change in our understanding of molecular events underlying the detection and transmission of noxious stimuli by the peripheral nervous system. For example, the voltage-gated sodium ion channel Nav1.7 is expressed selectively in sensory and autonomic neurons; inactivating mutations in SCN9A, which encodes Nav1.7, result in congenital insensitivity to pain, whereas gain-of-function mutations in this gene produce distinct pain syndromes such as inherited erythromelalgia, paroxysmal extreme pain disorder, and small-fibre neuropathy...
June 2014: Lancet Neurology
Angelika Lampert, Mirjam Eberhardt, Stephen G Waxman
Mutations in voltage-gated sodium channels, especially Nav1.7, can cause the genetic pain syndromes inherited erythromelalgia, small fiber neuropathy, paroxysmal extreme pain disorder, and chronic insensitivity to pain. Functional analysis of these mutations offers the possibility of understanding the potential pathomechanisms of these disease patterns and also may help to explicate the molecular mechanisms underlying pain in normal conditions. The mutations are distributed over the whole channel protein, but nevertheless induce similar changes for each pain syndrome...
2014: Handbook of Experimental Pharmacology
Dmytro V Vasylyev, Chongyang Han, Peng Zhao, Sulayman Dib-Hajj, Stephen G Waxman
The link between sodium channel Nav1.7 and pain has been strengthened by identification of gain-of-function mutations in patients with inherited erythromelalgia (IEM), a genetic model of neuropathic pain in humans. A firm mechanistic link to nociceptor dysfunction has been precluded because assessments of the effect of the mutations on nociceptor function have thus far depended on electrophysiological recordings from dorsal root ganglia (DRG) neurons transfected with wild-type (WT) or mutant Nav1.7 channels, which do not permit accurate calibration of the level of Nav1...
April 2014: Journal of Neurophysiology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"