Read by QxMD icon Read

spermatogenesis histone variants

Xiaoming Zhang, Wisna Novera, Yan Zhang, Lih-Wen Deng
The mixed lineage leukemia (MLL) family of genes, also known as the lysine N-methyltransferase 2 (KMT2) family, are homologous to the evolutionarily conserved trithorax group that plays critical roles in the regulation of homeotic gene (HOX) expression and embryonic development. MLL5, assigned as KMT2E on the basis of its SET domain homology, was initially categorized under MLL (KMT2) family together with other six SET methyltransferase domain proteins (KMT2A-2D and 2F-2G). However, emerging evidence suggests that MLL5 is distinct from the other MLL (KMT2) family members, and the protein it encodes appears to lack intrinsic histone methyltransferase (HMT) activity towards histone substrates...
February 10, 2017: Cellular and Molecular Life Sciences: CMLS
N Gupta, S Pentakota, L N Mishra, R Jones, M R S Rao
Chromatin architecture in mammalian spermatogenesis undergoes extensive structural and functional reorganization during which several testis-specific histone variants and other chromatin proteins are expressed in a stage-dependent manner. The most dramatic change in chromatin composition is observed during spermiogenesis where nucleosomal chromatin is transformed into nucleoprotamine fiber. Role of posttranslational modification (PTM) of somatic canonical histones and histone variants is well documented and effect several chromatin-templated events...
2017: Methods in Enzymology
Jun Ueda, Akihito Harada, Takashi Urahama, Shinichi Machida, Kazumitsu Maehara, Masashi Hada, Yoshinori Makino, Jumpei Nogami, Naoki Horikoshi, Akihisa Osakabe, Hiroyuki Taguchi, Hiroki Tanaka, Hiroaki Tachiwana, Tatsuma Yao, Minami Yamada, Takashi Iwamoto, Ayako Isotani, Masahito Ikawa, Taro Tachibana, Yuki Okada, Hiroshi Kimura, Yasuyuki Ohkawa, Hitoshi Kurumizaka, Kazuo Yamagata
Cellular differentiation is associated with dynamic chromatin remodeling in establishing a cell-type-specific epigenomic landscape. Here, we find that mouse testis-specific and replication-dependent histone H3 variant H3t is essential for very early stages of spermatogenesis. H3t gene deficiency leads to azoospermia because of the loss of haploid germ cells. When differentiating spermatogonia emerge in normal spermatogenesis, H3t appears and replaces the canonical H3 proteins. Structural and biochemical analyses reveal that H3t-containing nucleosomes are more flexible than the canonical nucleosomes...
January 17, 2017: Cell Reports
Sivaraman Padavattan, Viswanathan Thiruselvam, Toshie Shinagawa, Kazuya Hasegawa, Takashi Kumasaka, Shunsuke Ishii, Thirumananseri Kumarevel
Th2a and Th2b are the testis-specific histone variants highly expressed during spermatogenesis. Approximately 4% of the genome is retained in nucleosomes in mature human sperm, which is enriched at loci of developmental importance. Our recent studies revealed that the mouse histone variant homologs TH2a and TH2b are involved in reprogramming. In the present work, we report three nucleosome structures (NCPs) with human testis-specific histone variants hTh2a and hTh2b, [hGcH (hTh2a-hTh2b-H3-H4), hGcHV1 (hTh2a-H2b-H3-H4) and hGcHV2 (H2a-hTh2b-H3-H4)] and a 146-base pair (bp) duplex DNA fragment at ~3...
February 2017: Biophysical Chemistry
Ho-Geun Kwak, Naoshi Dohmae
RATIONALE: Post-translational modifications (PTMs) of histones result in changes to transcriptional activities and chromatin remodeling. Lysine 9 of histone H3 (H3K9) is subject to PTMs, such as methylation and acetylation, which influence histone activity during spermatogenesis. Characterization strategies for studying PTMs on H3K9 have been developed to provide epigenetic and proteomic information. Proteomic analysis has been used to limited success to study PTMs on H3K9; however, a comprehensive analytical approach is required to elucidate global patterns of PTMs of H3 variants during spermatogenesis...
September 19, 2016: Rapid Communications in Mass Spectrometry: RCM
Anna Török, Philipp H Schiffer, Christine E Schnitzler, Kris Ford, James C Mullikin, Andreas D Baxevanis, Antony Bacic, Uri Frank, Sebastian G Gornik
BACKGROUND: Cnidarians are a group of early branching animals including corals, jellyfish and hydroids that are renowned for their high regenerative ability, growth plasticity and longevity. Because cnidarian genomes are conventional in terms of protein-coding genes, their remarkable features are likely a consequence of epigenetic regulation. To facilitate epigenetics research in cnidarians, we analysed the histone complement of the cnidarian model organism Hydractinia echinata using phylogenomics, proteomics, transcriptomics and mRNA in situ hybridisations...
2016: Epigenetics & Chromatin
Ho-Geun Kwak, Naoshi Dohmae
Various histones, including testis-specific histones, exist during spermatogenesis and some of them have been reported to play a key role in chromatin remodeling. Mass spectrometry (MS)-based characterization has become the important step to understand histone structures. Although individual histones or partial histone variant groups have been characterized, the comprehensive analysis of histone variants has not yet been conducted in the mouse testis. Here, we present the comprehensive separation and characterization of histone variants from mouse testes by a top-down approach using MS...
November 15, 2016: Bioscience Trends
Satoru Kanto, Marcin Grynberg, Yoshiyuki Kaneko, Jun Fujita, Masanobu Satake
Background. Members of the Runx gene family encode transcription factors that bind to DNA in a sequence-specific manner. Among the three Runx proteins, Runx2 comprises 607 amino acid (aa) residues, is expressed in bone, and plays crucial roles in osteoblast differentiation and bone development. We examined whether the Runx2 gene is also expressed in testes. Methods. Murine testes from 1-, 2-, 3-, 4-, and 10-week-old male mice of the C57BL/6J strain and W∕W (v) strain were used throughout the study. Northern Blot Analyses were performed using extracts form the murine testes...
2016: PeerJ
Ruiko Tani, Koji Hayakawa, Satoshi Tanaka, Kunio Shiota
H1T is a linker histone H1 variant that is highly expressed at the primary spermatocyte stage through to the early spermatid stage of spermatogenesis. While the functions of the somatic types of H1 have been extensively investigated, the intracellular role of H1T is unclear. H1 variants specifically expressed in germ cells show low amino acid sequence homology to somatic H1s, which suggests that the functions or target loci of germ cell-specific H1T differ from those of somatic H1s. Here, we describe the target loci and function of H1T...
April 2, 2016: Epigenetics: Official Journal of the DNA Methylation Society
Takashi Urahama, Akihito Harada, Kazumitsu Maehara, Naoki Horikoshi, Koichi Sato, Yuko Sato, Koji Shiraishi, Norihiro Sugino, Akihisa Osakabe, Hiroaki Tachiwana, Wataru Kagawa, Hiroshi Kimura, Yasuyuki Ohkawa, Hitoshi Kurumizaka
BACKGROUND: Human histone H3.5 is a non-allelic H3 variant evolutionally derived from H3.3. The H3.5 mRNA is highly expressed in human testis. However, the function of H3.5 has remained poorly understood. RESULTS: We found that the H3.5 nucleosome is less stable than the H3.3 nucleosome. The crystal structure of the H3.5 nucleosome showed that the H3.5-specific Leu103 residue, which corresponds to the H3.3 Phe104 residue, reduces the hydrophobic interaction with histone H4...
2016: Epigenetics & Chromatin
Tasman J Daish, Aaron E Casey, Frank Grutzner
BACKGROUND: In therian mammals heteromorphic sex chromosomes are subject to meiotic sex chromosome inactivation (MSCI) during meiotic prophase I while the autosomes maintain transcriptional activity. The evolution of this sex chromosome silencing is thought to result in retroposition of genes required in spermatogenesis from the sex chromosomes to autosomes. In birds sex chromosome specific silencing appears to be absent and global transcriptional reductions occur through pachytene and sex chromosome-derived autosomal retrogenes are lacking...
2015: BMC Biology
Sezgin Güneş, Tuba Kulaç
Male germ cells have a unique morphology and function to facilitate fertilization. Sperm deoxyribonucleic acid (DNA) is highly condensed to protect the paternal genome during transfer from male to oocyte. Sperm cells undergo extensive epigenetic modifications during differentiation to become a mature spermatozoon. Epigenetic modifications, including DNA methylation, histone modifications, and chromatin remodeling are substantial regulators of spermatogenesis. DNA hypermethylation is associated with gene silencing...
September 2013: Turkish Journal of Urology
Haleh Haji Ebrahim Zargar, Anahita Mohseni Meybodi, Marjan Sabbaghian, Maryam Shahhoseini, Ummulbanin Asadpor, Mohammad Ali Sadighi Gilani, Mohammad Chehrazi, Mansoureh Farhangniya, Seyed Abolhassan Shahzadeh Fazeli
BACKGROUND: During spermatogenesis, the H2B family, member W (H2B.W) gene, en- codes a testis specific histone that is co-localized with telomeric sequences and has the potential role to mediate the sperm-specific chromatin remodeling. Previously H2B.W genetic variants were reported to be involved in susceptibility to spermatogenesis im- pairment. In the present study, two single nucleotide polymorphisms (SNPs) in 5΄UTR and exon 1 of H2B.W gene were examined to investigate possible association of these polymorphisms with male infertility in Iranian population...
July 2015: International Journal of Fertility & Sterility
Toshie Shinagawa, Linh My Huynh, Tsuyoshi Takagi, Daisuke Tsukamoto, Chinatsu Tomaru, Ho-Geun Kwak, Naoshi Dohmae, Junko Noguchi, Shunsuke Ishii
The variant histones TH2A and TH2B are abundant in the testis, but their roles in spermatogenesis remain elusive. Here, we show that male mutant mice lacking both Th2a and Th2b genes were sterile, with few sperm in the epididymis. In the mutant testis, the lack of TH2B was compensated for by overexpression of H2B, whereas overexpression of H2A was not observed, indicating a decrease in the total histone level. Mutant mice exhibited two defects: incomplete release of cohesin at interkinesis after meiosis I and histone replacement during spermiogenesis...
April 1, 2015: Development
Mark Samson, Margaret M Jow, Catherine C L Wong, Colin Fitzpatrick, Aaron Aslanian, Israel Saucedo, Rodrigo Estrada, Takashi Ito, Sung-kyu Robin Park, John R Yates, Diana S Chu
In addition to the DNA contributed by sperm and oocytes, embryos receive parent-specific epigenetic information that can include histone variants, histone post-translational modifications (PTMs), and DNA methylation. However, a global view of how such marks are erased or retained during gamete formation and reprogrammed after fertilization is lacking. To focus on features conveyed by histones, we conducted a large-scale proteomic identification of histone variants and PTMs in sperm and mixed-stage embryo chromatin from C...
October 2014: PLoS Genetics
Benjamin T K Yuen, Kelly M Bush, Bonnie L Barrilleaux, Rebecca Cotterman, Paul S Knoepfler
The histone variant H3.3 is involved in diverse biological processes, including development, transcriptional memory and transcriptional reprogramming, as well as diseases, including most notably malignant brain tumors. Recently, we developed a knockout mouse model for the H3f3b gene, one of two genes encoding H3.3. Here, we show that targeted disruption of H3f3b results in a number of phenotypic abnormalities, including a reduction in H3.3 histone levels, leading to male infertility, as well as abnormal sperm and testes morphology...
September 2014: Development
C C Fong, Y F Shi, W K Yu, F Wei, J P van de Merwe, Alice K Y Chan, R Ye, Doris W T Au, Rudolf S S Wu, M S Yang
A recent study demonstrated that 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) may have an adverse effect on the reproduction in marine medaka (Oryzias melastigma), but the molecular mechanisms remain largely unknown. In this study, we investigated the protein expression profiles of male and female gonads of O. melastigma exposed to dietary BDE-47 at two dosages (0.65 and 1.30 μg/g/day, respectively) for 21 days. Extracted proteins were labeled with iTRAQ and analyzed on a MALDI TOF/TOF analyzer, as results, 133 and 144 unique proteins were identified in testis and ovary, respective, and they exerted dose- and sex-dependent expression patterns...
August 30, 2014: Marine Pollution Bulletin
Saher Sue Hammoud, Diana H P Low, Chongil Yi, Douglas T Carrell, Ernesto Guccione, Bradley R Cairns
Adult germline stem cells (AGSCs) self-renew (Thy1(+) enriched) or commit to gametogenesis (Kit(+) enriched). To better understand how chromatin regulates AGSC biology and gametogenesis, we derived stage-specific high-resolution profiles of DNA methylation, 5hmC, histone modifications/variants, and RNA-seq in AGSCs and during spermatogenesis. First, we define striking signaling and transcriptional differences between AGSC types, involving key self-renewal and proliferation pathways. Second, key pluripotency factors (e...
August 7, 2014: Cell Stem Cell
Wangzhi Li, Jie Wu, Sang-Yong Kim, Ming Zhao, Stephen A Hearn, Michael Q Zhang, Marvin L Meistrich, Alea A Mills
One of the most remarkable chromatin remodelling processes occurs during spermiogenesis, the post-meiotic phase of sperm development during which histones are replaced with sperm-specific protamines to repackage the genome into the highly compact chromatin structure of mature sperm. Here we identify Chromodomain helicase DNA binding protein 5 (Chd5) as a master regulator of the histone-to-protamine chromatin remodelling process. Chd5 deficiency leads to defective sperm chromatin compaction and male infertility in mice, mirroring the observation of low CHD5 expression in testes of infertile men...
2014: Nature Communications
Takashi Urahama, Naoki Horikoshi, Akihisa Osakabe, Hiroaki Tachiwana, Hitoshi Kurumizaka
The human histone H2B variant TSH2B is highly expressed in testis and may function in the chromatin transition during spermatogenesis. In the present study, the crystal structure of the human testis-specific nucleosome containing TSH2B was determined at 2.8 Å resolution. A local structural difference between TSH2B and canonical H2B in nucleosomes was detected around the TSH2B-specific amino-acid residue Ser85. The TSH2B Ser85 residue does not interact with H4 in the nucleosome, but in the canonical nucleosome the H2B Asn84 residue (corresponding to the TSH2B Ser85 residue) forms water-mediated hydrogen bonds with the H4 Arg78 residue...
April 2014: Acta Crystallographica. Section F, Structural Biology Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"