Read by QxMD icon Read


Jennifer T Wang, Tim Stearns
The centriole is a defining feature of many eukaryotic cells. It nucleates a cilium, organizes microtubules as part of the centrosome, and is duplicated in coordination with the cell cycle. Centrioles have a remarkable structure, consisting of microtubules arranged in a barrel with ninefold radial symmetry. At their base, or proximal end, centrioles have unique triplet microtubules, formed from three microtubules linked to each other. This microtubule organization is not found anywhere else in the cell, is conserved in all major branches of the eukaryotic tree, and likely was present in the last eukaryotic common ancestor...
March 14, 2018: Cold Spring Harbor Symposia on Quantitative Biology
Benjamin B A Raymond, Ranya Madhkoor, Ina Schleicher, Cord C Uphoff, Lynne Turnbull, Cynthia B Whitchurch, Manfred Rohde, Matthew P Padula, Steven P Djordjevic
Mycoplasma hyopneumoniae , an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M...
2018: Frontiers in Cellular and Infection Microbiology
Christina Gerth-Kahlert, Samuel Koller
Ciliopathies are disorders caused by ciliary dysfunction and can affect an organ system or tissues. Isolated or syndromic retinal dystrophies are the most common ocular manifestation of ciliopathies. The photoreceptor connecting cilium plays a leading role in these ciliopathy-related retinal dystrophies. Dysfunctional photoreceptor cilia cause the most severe type of retinal dystrophy: Leber's congenital amaurosis (LCA). The most common syndromic ciliopathies with an ocular manifestation are Bardet-Biedl syndrome (BBS) and Usher syndrome...
March 2018: Klinische Monatsblätter Für Augenheilkunde
Takuya Ohmura, Yukinori Nishigami, Atsushi Taniguchi, Shigenori Nonaka, Junichi Manabe, Takuji Ishikawa, Masatoshi Ichikawa
An important habit of ciliates, namely, their behavioral preference for walls, is revealed through experiments and hydrodynamic simulations. A simple mechanical response of individual ciliary beating (i.e., the beating is stalled by the cilium contacting a wall) can solely determine the sliding motion of the ciliate along the wall and result in a wall-preferring behavior. Considering ciliate ethology, this mechanosensing system is likely an advantage in the single cell's ability to locate nutrition. In other words, ciliates can skillfully use both the sliding motion to feed on a surface and the traveling motion in bulk water to locate new surfaces according to the single "swimming" mission...
March 12, 2018: Proceedings of the National Academy of Sciences of the United States of America
Katarína Skalická, Gabriela Hrčková, Anita Vaská, Ágnes Baranyaiová, László Kovács
AIM: To evaluate the genetic defects of ciliary genes causing the loss of primary cilium in autosomal dominant polycystic kidney disease (ADPKD). METHODS: We analyzed 191 structural and functional genes of the primary cilium using next-generation sequencing analysis. We analyzed the kidney samples, which were obtained from 7 patients with ADPKD who underwent nephrectomy. Each sample contained polycystic kidney tissue and matched normal kidney tissue. RESULTS: In our study, we identified genetic defects in the 5 to 15 genes in each ADPKD sample...
March 6, 2018: World Journal of Nephrology
Wen-Li Deng, Mei-Ling Gao, Xin-Lan Lei, Ji-Neng Lv, Huan Zhao, Kai-Wen He, Xi-Xi Xia, Ling-Yun Li, Yu-Chen Chen, Yan-Ping Li, Deng Pan, Tian Xue, Zi-Bing Jin
Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity...
February 28, 2018: Stem Cell Reports
Maren Mönnich, Louise Borgeskov, Loretta Breslin, Lis Jakobsen, Michaela Rogowski, Canan Doganli, Jacob M Schrøder, Johanne B Mogensen, Louise Blinkenkjær, Lea M Harder, Emma Lundberg, Stefan Geimer, Søren T Christensen, Jens S Andersen, Lars A Larsen, Lotte B Pedersen
The centrosome is the main microtubule-organizing center in animal cells and comprises a mother and daughter centriole surrounded by pericentriolar material. During formation of primary cilia, the mother centriole transforms into a basal body that templates the ciliary axoneme. Ciliogenesis depends on mother centriole-specific distal appendages, whereas the role of subdistal appendages in ciliary function is unclear. Here, we identify CEP128 as a centriole subdistal appendage protein required for regulating ciliary signaling...
March 6, 2018: Cell Reports
Michele A Corrigan, Gillian P Johnson, Elena Stavenschi, Mathieu Riffault, Marie-Noelle Labour, David A Hoey
Skeletal homeostasis requires the continued replenishment of the bone forming osteoblast from a mesenchymal stem cell (MSC) population, a process that has been shown to be mechanically regulated. However, the mechanisms by which a biophysical stimulus can induce a change in biochemical signaling, mechanotransduction, is poorly understood. As a precursor to loading-induced bone formation, deciphering the molecular mechanisms of MSC osteogenesis is a critical step in developing novel anabolic therapies. Therefore, in this study we characterize the expression of the mechanosensitive calcium channel Transient Receptor Potential subfamily V member 4 (TRPV4) in MSCs and demonstrate that TRPV4 localizes to areas of high strain, specifically the primary cilium...
February 28, 2018: Scientific Reports
Ae Lee Jeong, Hye In Ka, Sora Han, Sunyi Lee, Eun-Woo Lee, Su Jung Soh, Hyun Jeong Joo, Buyanravjkh Sumiyasuren, Ji Young Park, Jong-Seok Lim, Jong Hoon Park, Myung Sok Lee, Young Yang
In most mammalian cells, the primary cilium is a microtubule-enriched protrusion of the plasma membrane and acts as a key coordinator of signaling pathways during development and tissue homeostasis. The primary cilium is generated from the basal body, and cancerous inhibitor of protein phosphatase 2A (CIP2A), the overexpression of which stabilizes c-MYC to support the malignant growth of tumor cells, is localized in the centrosome. Here, we show that CIP2A overexpression induces primary cilia disassembly through the activation of Aurora A kinase, and CIP2A depletion increases ciliated cells and cilia length in retinal pigment epithelium (RPE1) cells...
February 28, 2018: EMBO Reports
Elizabeth Forsythe, Joanna Kenny, Chiara Bacchelli, Philip L Beales
Bardet-Biedl syndrome is a rare autosomal recessive multisystem disorder caused by defects in genes encoding for proteins that localize to the primary cilium/basal body complex. Twenty-one disease-causing genes have been identified to date. It is one of the most well-studied conditions in the family of diseases caused by defective cilia collectively known as ciliopathies. In this review, we provide an update on diagnostic developments, clinical features, and progress in the management of Bardet-Biedl syndrome...
2018: Frontiers in Pediatrics
Chengbing Wang, Jia Li, Ken-Ichi Takemaru, Xiaogang Jiang, Guoqiang Xu, Baolin Wang
The primary cilium is a microtubule-based organelle required for Hedgehog (Hh) signaling and consists of basal body, ciliary axoneme, and transition zone, a compartment between the first two structures. The transition zone serves as a gatekeeper to control protein composition in cilia, but less is known about its role in ciliary bud formation. Here, we show that centrosomal protein Dzip1l is required for Hh signaling between Smoothened and Sufu. Dzip1l colocalizes with basal body appendage proteins and Rpgrip1l, a transition zone protein...
February 27, 2018: Development
Siew Cheng Phua, Yuta Nihongaki, Takanari Inoue
The primary cilium is a cell surface projection from plasma membrane which transduces external stimuli to diverse signaling pathways. To function as an independent signaling organelle, the molecular composition of the ciliary membrane has to be distinct from that of the plasma membrane. Here, we review recent findings which have deepened our understanding of the unique yet dynamic phosphoinositide profile found in the primary cilia.
February 21, 2018: Current Opinion in Cell Biology
Gabrielle Wheway, Liliya Nazlamova, John T Hancock
The presence of single, non-motile "primary" cilia on the surface of epithelial cells has been well described since the 1960s. However, for decades these organelles were believed to be vestigial, with no remaining function, having lost their motility. It wasn't until 2003, with the discovery that proteins responsible for transport along the primary cilium are essential for hedgehog signaling in mice, that the fundamental importance of primary cilia in signal transduction was realized. Little more than a decade later, it is now clear that the vast majority of signaling pathways in vertebrates function through the primary cilium...
2018: Frontiers in Cell and Developmental Biology
Emily L Hunter, Karl Lechtreck, Gang Fu, Juyeon Hwang, Huawen Lin, Avanti Gokhale, Lea M Alford, Brian Lewis, Ryosuke Yamamoto, Ritsu Kamiya, Fan Yang, Daniela Nicastro, Susan K Dutcher, Maureen Wirschell, Winfield S Sale
Axonemal dyneins, including inner dynein arm I1, assemble in the cytoplasm prior to transport into cilia by intraflagellar transport (IFT). How I1 dynein interacts with IFT is not understood. We take advantage of the Chlamydomonas reinhardtii ida3 mutant that assembles the inner arm I1 dynein complex in the cytoplasm but fails to transport I1 into the cilium, resulting in I1 dynein-deficient axonemes with abnormal motility. The IDA3 gene encodes a ∼115 kDa coiled-coil protein that primarily enters the cilium during ciliary growth but is not an axonemal protein...
February 21, 2018: Molecular Biology of the Cell
Jayne F Martin Carli, Charles A LeDuc, Yiying Zhang, George Stratigopoulos, Rudolph L Leibel
Genetic variants within the FTO (α-ketoglutarate-dependent dioxygenase) gene have been strongly associated with a modest increase in adiposity as a result of increased food intake. These risk alleles are associated with decreased expression of both FTO and neighboring RPGRIP1L (retinitis pigmentosa GTPase regulator-interacting protein 1 like). RPGRIP1L encodes a protein that is critical to the function of the primary cilium, which conveys extracellular information to the cell. Rpgrip1l+/- mice exhibit increased adiposity, in part, as a result of hyperphagia...
February 21, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Xiao Dong, Miao Shi, Moonsook Lee, Rafael Toro, Silvia Gravina, Weiguo Han, Shoya Yasuda, Tao Wang, Zhengdong Zhang, Jan Vijg, Yousin Suh, Simon D Spivack
Gene regulatory analysis of highly diverse human tissues in vivo is essentially constrained by the challenge of performing genome-wide, integrated epigenetic and transcriptomic analysis in small selected groups of specific cell types. Here we performed genome-wide bisulfite sequencing and RNA-seq from the same small groups of bronchial and alveolar cells isolated by laser capture microdissection from flash-frozen lung tissue of 12 donors and their peripheral blood T cells. Methylation and transcriptome patterns differed between alveolar and bronchial cells, while each of these epithelia showed more differences from mesodermally-derived T cells...
February 21, 2018: Epigenetics: Official Journal of the DNA Methylation Society
Sami G Mohammed, Francisco J Arjona, Eric H J Verschuren, Zeineb Bakey, Wynand Alkema, Sacha van Hijum, Miriam Schmidts, René J M Bindels, Joost G J Hoenderop
Renal tubular cells respond to mechanical stimuli generated by urinary flow to regulate the activity and transcript abundance of important genes for ion handling, cellular homeostasis, and proper renal development. The primary cilium, a mechanosensory organelle, is postulated to regulate this mRNA response. The aim of this study is to reveal the transcriptome changes of tubular epithelia in response to fluid flow and determine the role of primary cilia in this process. Inner-medullary collecting duct (CD) cells were subjected to either static or physiologically relevant fluid flow (∼0...
February 8, 2018: FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology
Hideyuki Sugioka, Naoki Nakano
An artificial cilium using ac electro-osmosis (ACEO) is attractive because of its large potentiality for innovative microfluidic applications. However, the ACEO cilium has not been probed experimentally and has a shortcoming that the working frequency range is very narrow. Thus, we here propose an ACEO elastic actuator having a skew structure that broadens a working frequency range and experimentally demonstrate that the elastic actuator in water can be driven with a high-speed (∼10 Hz) and a wide frequency range (∼0...
January 2018: Physical Review. E
Xiaowen Liu, Thuy Vien, Jingjing Duan, Shu-Hsien Sheu, Paul G DeCaen, David E Clapham
Mutations in the polycystin genes, PKD1 or PKD2, results in Autosomal Dominant Polycystic Kidney Disease (ADPKD). Although a genetic basis of ADPKD is established, we lack a clear understanding of polycystin proteins' functions as ion channels. This question remains unsolved largely because polycystins localize to the primary cilium - a tiny, antenna-like organelle. Using a new ADPKD mouse model, we observe primary cilia that are abnormally long in cells associated with cysts after conditional ablation of Pkd1 or Pkd2 ...
February 14, 2018: ELife
Jianguo Fan, Joshua Lerner, M Keith Wyatt, Phillip Cai, Katherine Peterson, Lijin Dong, Graeme Wistow
KLPH/lctl belongs to the Klotho family of proteins. Expressed sequence tag analyses unexpectedly revealed that KLPH is highly expressed in the eye lens while northern blots showed that expression is much higher in the eye than in other tissues. In situ hybridization in mouse localized mRNA to the lens, particularly in the equatorial epithelium. Immunofluorescence detected KLPH in lens epithelial cells with highest levels in the germinative/differentiation zone. The gene for KLPH in mouse was deleted by homologous recombination...
February 6, 2018: Experimental Eye Research
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"