Read by QxMD icon Read


Qingqing Liu, Tao Tao, Fang Liu, Runzhou Ni, Cuihua Lu, Aiguo Shen
As an essential post-translational modification, O-GlcNAcylation has been thought to be able to modulate various nuclear and cytoplasmic proteins and is emerging as a key regulator of multiple biological processes, such as transcription, cell growth, signal transduction, and cell motility. Recently, authoritative glycomics analyses have reported extensive crosstalk between O-GlcNAcylation and phosphorylation, which always dynamically interplay with each other and regulate signaling, transcription, and other cellular processes...
October 14, 2016: Experimental Cell Research
Lan V Pham, Jerry L Bryant, Richard Mendez, Juan Chen, Archito T Tamayo, Zijun Y Xu-Monette, Ken H Young, Ganiraju C Manyam, David Yang, L Jeffrey Medeiros, Richard J Ford
The hexosamine biosynthetic pathway (HBP) requires two key nutrients glucose and glutamine for O-linked N-acetylglucosamine (O-GlcNAc) cycling, a post-translational protein modification that adds GlcNAc to nuclear and cytoplasmic proteins. Increased GlcNAc has been linked to regulatory factors involved in cancer cell growth and survival. However, the biological significance of GlcNAc in diffuse large B-cell lymphoma (DLBCL) is not well defined. This study is the first to show that both the substrate and the endpoint O-GlcNAc transferase (OGT) enzyme of the HBP were highly expressed in DLBCL cell lines and in patient tumors compared with normal B-lymphocytes...
October 3, 2016: Oncotarget
Hyeon Gyu Seo, Han Byeol Kim, Min Jueng Kang, Joo Hwan Ryum, Eugene C Yi, Jin Won Cho
Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451-453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted...
October 7, 2016: Scientific Reports
Muhammad Tariq Saeed, Jamil Ahmad, Shahzina Kanwal, Andreana N Holowatyj, Iftikhar A Sheikh, Rehan Zafar Paracha, Aamir Shafi, Amnah Siddiqa, Zurah Bibi, Mukaram Khan, Amjad Ali
The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes...
2016: PeerJ
Hye Ji Oh, Hye Yun Moon, Seon Ah Cheon, Yoonsoo Hahn, Hyun Ah Kang
O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation is an important post-translational modification in many cellular processes. It is mediated by O-GlcNAc transferases (OGTs), which catalyze the addition of O-GlcNAc to serine or threonine residues of the target proteins. In this study, we expressed a putative Yarrowia lipolytica OGT (YlOGT), the only homolog identified in the subphylum Saccharomycotina through bioinformatics analysis, and the human OGT (hOGT) as recombinant proteins in Saccharomyces cerevisiae, and performed their functional characterization...
October 2016: Journal of Microbiology / the Microbiological Society of Korea
Satu Tiainen, Sanna Oikari, Markku Tammi, Kirsi Rilla, Kirsi Hämäläinen, Raija Tammi, Veli-Matti Kosma, Päivi Auvinen
PURPOSE: Obesity and oversupply of glucose, e.g., due to nutritional factors may shape the tumor microenvironment favorable for tumor progression. O-GlcNAcylation, a reversible modification of intracellular proteins, influences on several cellular functions and is connected to many diseases including cancer. Glycosaminoglycan hyaluronan (HA) enhances tumor progression and in breast cancer HA accumulation associates strongly with poor outcome. In vitro studies have suggested that O-GlcNAcylation may enhance HA synthesis...
November 2016: Breast Cancer Research and Treatment
Albert Lee, Devin Miller, Roger Henry, Venkata D P Paruchuri, Robert N O'Meally, Tatiana Boronina, Robert N Cole, Natasha E Zachara
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival...
October 14, 2016: Journal of Proteome Research
Kristin Halvorsen Hortemo, Per Kristian Lunde, Jan Haug Anonsen, Heidi Kvaløy, Morten Munkvik, Tommy Aune Rehn, Ivar Sjaastad, Ida Gjervold Lunde, Jan Magnus Aronsen, Ole M Sejersted
Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2)...
September 2016: Physiological Reports
Lin Zhao, Zhihui Feng, Xiaoyong Yang, Jiankang Liu
Nutrients excess is one of the leading causes of metabolic syndrome globally. Protein post-translational O-GlcNAc modification has been recognized as an essential nutrient sensor of the cell. Emerging studies suggest that O-GlcNAcylation lies at the core linking nutritional stress to insulin resistance. Mitochondria are the major site for ATP production in most eukaryotes. Mitochondrial dysfunction and oxidative stress have long been considered as an important mechanism underlying insulin resistance. The metabolic process is under the influence of environmental and nutritional factors, thus sensing and transducing nutritional signals sit at the pivot of metabolism control...
September 20, 2016: Free Radical Research
Sungsu Kim, Jason C Maynard, Yo Sasaki, Amy Strickland, Diane L Sherman, Peter J Brophy, Alma L Burlingame, Jeffrey Milbrandt
UNLABELLED: Schwann cells (SCs), ensheathing glia of the peripheral nervous system, support axonal survival and function. Abnormalities in SC metabolism affect their ability to provide this support and maintain axon integrity. To further interrogate this metabolic influence on axon-glial interactions, we generated OGT-SCKO mice with SC-specific deletion of the metabolic/nutrient sensing protein O-GlcNAc transferase that mediates the O-linked addition of N-acetylglucosamine (GlcNAc) moieties to Ser and Thr residues...
September 14, 2016: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Jing Li, Jiajia Wang, Liuqing Wen, He Zhu, Shanshan Li, Kenneth Huang, Kuan Jiang, Xu Li, Cheng Ma, Jingyao Qu, Aishwarya Parameswaran, Jing Song, Wei Zhao, Peng George Wang
O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification...
October 14, 2016: ACS Chemical Biology
Mitsuko Hirosawa, Koji Hayakawa, Chikako Yoneda, Daisuke Arai, Hitoshi Shiota, Takehiro Suzuki, Satoshi Tanaka, Naoshi Dohmae, Kunio Shiota
We report here newly discovered O-linked-N-acetylglucosamine (O-GlcNAc) modification of histone H2A at Ser(40) (H2AS40Gc). The mouse genome contains 18 H2A isoforms, of which 13 have Ser(40) and the other five have Ala(40). The combination of production of monoclonal antibody and mass spectrometric analyses with reverse-phase (RP)-high performance liquid chromatography (HPLC) fractionation indicated that the O-GlcNAcylation is specific to the Ser(40) isoforms. The H2AS40Gc site is in the L1 loop structure where two H2A molecules interact in the nucleosome...
2016: Scientific Reports
Kazuo Kamemura, Hiromi Abe
Although Ewing sarcoma protein (EWS) is known to be glycosylated by O-linked β-N-acetylglucosamine (O-GlcNAc), the dynamics and stoichiometry of its glycosylation remain obscure. Here, we report a dynamic change in the glycosylation stoichiometry of EWS species during neuronal differentiation of embryonic carcinoma P19 cells. Our findings suggest that O-GlcNAc glycosylation participates in the regulation of EWS functions in neuronal cells.
September 8, 2016: Bioscience, Biotechnology, and Biochemistry
Melissa Resto, Bong-Hyun Kim, Alfonso G Fernandez, Brian J Abraham, Keji Zhao, Brian A Lewis
We describe here the identification and functional characterization of the enzyme O-GlcNAcase (OGA) as an RNA polymerase II elongation factor. Using in vitro transcription elongation assays, we show that OGA activity is required for elongation in a crude nuclear extract system, while in a purified system devoid of OGA, the addition of rOGA inhibited elongation. Furthermore, OGA is physically associated with the known RNA pol II pausing/elongation factors SPT5 and TRIM28/KAP1/TIF1b, and a purified OGA/SPT5/TIF1b complex has elongation properties...
September 6, 2016: Journal of Biological Chemistry
Parunya Chaiyawat, Churat Weeraphan, Pukkavadee Netsirisawan, Daranee Chokchaichamnankit, Chantragan Srisomsap, Jisnuson Svasti, Voraratt Champattanachai
BACKGROUND: O-GlcNAcylation is a single sugar attachment of serine and/or threonine residues on intracellular proteins. Recent reports reveal that it can modify several secretory proteins; however, the underlying mechanisms are largely unexplored. MATERIALS AND METHODS: To investigate whether extracellular vesicles (EVs) carry secretory O-GlcNAc-modified proteins that were isolated from colorectal cancer (CRC) cells, two-dimensional gel electrophoresis followed with O-GlcNAc immunoblotting and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied...
September 2016: Cancer Genomics & Proteomics
Jason C Maynard, A L Burlingame, Katalin F Medzihradszky
Intracellular GlcNAcylation of Ser and Thr residues is a well-known and widely investigated post-translational modification (PTM). This PTM has been shown to play a significant role in cell signaling and in many regulatory processes within cells. O-GlcNAc transferase is the enzyme responsible for glycosylating cytosolic and nuclear proteins with a single GlcNAc residue on Ser and Thr side-chains. Here we report that the same enzyme may also be responsible for S-GlcNAcylation, i.e. for linking the GlcNAc unit to the peptide by modifying a cysteine side-chain...
August 24, 2016: Molecular & Cellular Proteomics: MCP
Florence Mailleux, Roselle Gélinas, Christophe Beauloye, Sandrine Horman, Luc Bertrand
O-linked attachment of the monosaccharide β-N-acetyl-glucosamine (O-GlcNAcylation) is a post-translational modification occurring on serine and threonine residues, which is evolving as an important mechanism for the regulation of various cellular processes. The present review will, first, provide a general background on the molecular regulation of protein O-GlcNAcylation and will summarize the role of this post-translational modification in various acute cardiac pathologies including ischemia-reperfusion. Then, we will focus on research studies examining protein O-GlcNAcylation in the context of cardiac hypertrophy...
August 17, 2016: Biochimica et Biophysica Acta
Dongmei Zhang, Zhiwei Xu, Tao Tao, Xiaojuan Liu, Xiaolei Sun, Yuhong Ji, Lijian Han, Huiyuan Qiu, Guizhou Zhu, Yifen Shen, Liang Zhu, Aiguo Shen
Macrophages play many different roles in tissue inflammation and immunity, and the plasticity of macrophage polarization is closely associated with acute inflammatory responses. O-GlcNAcylation is an important type of post-translational modification, which subtly modulates inflammation responses. Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is a key serine/threonine protein kinase that mediates signals transduced by pro-inflammatory cytokines such as TGF-β, tumor necrosis factor (TNF), and interleukin-1 (IL-1)...
November 2016: Cellular Signalling
Mingzuo Jiang, Zhaoyan Qiu, Song Zhang, Xing Fan, Xiqiang Cai, Bing Xu, Xiaowei Li, Jinfeng Zhou, Xiangyuan Zhang, Yi Chu, Weijie Wang, Jie Liang, Tamas Horvath, Xiaoyong Yang, Kaichun Wu, Yongzhan Nie, Daiming Fan
O-GlcNAc transferase (OGT) is the only enzyme in mammals that catalyzes the attachment of β-D-N-acetylglucosamine (GlcNAc) to serine or threonine residues of target proteins. Hyper-O-GlcNAcylation is becoming increasingly realized as a general feature of cancer and contributes to rapid proliferation of cancer cells. In this study, we demonstrated that O-GlcNAc and OGT levels were increased in all six gastric cancer (GC) cell lines as compared with immortal gastric epithelial cells. Downregulation of the O-GlcNAcylation level by silencing OGT inhibited cell viability and growth rate via the cdk-2, cyclin D1 and ERK 1/2 pathways...
August 17, 2016: Oncotarget
Steffi F Baldini, Agata Steenackers, Stéphanie Olivier-Van Stichelen, Anne-Marie Mir, Marlène Mortuaire, Tony Lefebvre, Céline Guinez
Blood glucose fluctuates with the fasting-feeding cycle. One of the liver's functions is to maintain blood glucose concentrations within a physiological range. Glucokinase (GCK) or hexokinase IV, is the main enzyme that regulates the flux and the use of glucose in the liver leading to a compensation of hyperglycemia. In hepatocytes, GCK catalyzes the phosphorylation of glucose into glucose-6-phosphate. This critical enzymatic reaction is determinant for the metabolism of glucose in the liver which includes glycogen synthesis, glycolysis, lipogenesis and gluconeogenesis...
September 16, 2016: Biochemical and Biophysical Research Communications
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"