Read by QxMD icon Read

3 bromopyruvate

Stephanie Sprowl-Tanio, Amber N Habowski, Kira T Pate, Miriam M McQuade, Kehui Wang, Robert A Edwards, Felix Grun, Yung Lyou, Marian L Waterman
BACKGROUND: There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 (PDK1) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known...
2016: Cancer & Metabolism
Xianbin Su, Ruihong Li, Ka-Fai Kong, Jimmy S H Tsang
Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium...
September 23, 2016: Biochimica et Biophysica Acta
Suellen Ferro, João Azevedo-Silva, Margarida Casal, Manuela Côrte-Real, Fatima Baltazar, Ana Preto
Acetate, together with other short chain fatty acids has been implicated in colorectal cancer (CRC) prevention/therapy. Acetate was shown to induce apoptosis in CRC cells. The precise mechanism underlying acetate transport across CRC cells membrane, that may be implicated in its selectivity towards CRC cells, is not fully understood and was addressed here. We also assessed the effect of acetate in CRC glycolytic metabolism and explored its use in combination with the glycolytic inhibitor 3-bromopyruvate (3BP)...
September 21, 2016: Oncotarget
Katarzyna Niedźwiecka, Mariusz Dyląg, Daria Augustyniak, Grażyna Majkowska-Skrobek, Magdalena Cal-Bąkowska, Young H Ko, Peter L Pedersen, Andre Goffeau, Stanisław Ułaszewski
In different fungal and algal species, the intracellular concentration of reduced glutathione (GSH) correlates closely with their susceptibility to killing by the small molecule alkylating agent 3-bromopyruvate (3BP). Additionally, in the case of Cryptococcus neoformans cells 3BP exhibits a synergistic effect with buthionine sulfoximine (BSO), a known GSH depletion agent. This effect was observed when 3BP and BSO were used together at concentrations respectively of 4-5 and almost 8 times lower than their Minimal Inhibitory Concentration (MIC)...
August 25, 2016: Oncotarget
Izabela Sadowska-Bartosz, Jacek Grębowski, Ewa Kępka, Maciej Studzian, Grzegorz Bartosz, Łukasz Pułaski
AIMS: Cancer cells, due to the Warburg effect, are more dependent on glycolysis than normal cells, so glycolytic inhibitor 3-bromopyruvic acid (3-BP) was proposed as a promising candidate for anticancer therapy. Overexpression of multidrug transporters is the main reason of resistance of cancer cells to chemotherapy. As the activity of multidrug transporters imposes an energetic burden on the cells, it can be expected that inhibition of ATP generation may exert a selective cytotoxicity to cells overexpressing multidrug transporters...
October 1, 2016: Life Sciences
Ondřej Sobotka, René Endlicher, Zdeněk Drahota, Otto Kučera, David Rychtrmoc, Marjan Raad, Khurum Hakeem, Zuzana Červinková
A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 μM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 μM 3-BP lactate dehydrogenase leakage was increased (p < 0...
August 2016: Journal of Bioenergetics and Biomembranes
Alessandro Paiardini, Angela Tramonti, Doug Schirch, Giulia Guiducci, Martino Luigi di Salvo, Alessio Fiascarelli, Alessandra Giorgi, Bruno Maras, Francesca Cutruzzolà, Roberto Contestabile
The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity...
November 2016: Biochimica et Biophysica Acta
Feifei Sun, Yangchun Cao, Chao Yu, Xiaoshi Wei, Junhu Yao
BACKGROUND: Calcium is a vital mineral and an indispensable component of milk for ruminants. The regulation of transcellular calcium transport by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3, the active form of vitamin D) has been confirmed in humans and rodents, and regulators, including vitamin D receptor (VDR), calcium binding protein D9k (calbindin-D9k), plasma membrane Ca(2+)-ATPase 1b (PMCA1b), PMAC2b and Orai1, are involved in this process. However, it is still unclear whether 1,25-(OH)2D3 could stimulate calcium transport in the ruminant mammary gland...
2016: Journal of Animal Science and Biotechnology
J Azevedo-Silva, O Queirós, F Baltazar, S Ułaszewski, A Goffeau, Y H Ko, P L Pedersen, A Preto, M Casal
At the beginning of the twenty-first century, 3-bromopyruvate (3BP), a simple alkylating chemical compound was presented to the scientific community as a potent anticancer agent, able to cause rapid toxicity to cancer cells without bystander effects on normal tissues. The altered metabolism of cancers, an essential hallmark for their progression, also became their Achilles heel by facilitating 3BP's selective entry and specific targeting. Treatment with 3BP has been administered in several cancer type models both in vitro and in vivo, either alone or in combination with other anticancer therapeutic approaches...
August 2016: Journal of Bioenergetics and Biomembranes
Quangdon Tran, Hyunji Lee, Jisoo Park, Seon-Hwan Kim, Jongsun Park
After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes...
July 2016: Toxicological Research
Kui Song, Min Li, Xiaojun Xu, L I Xuan, Guinian Huang, Qifa Liu
Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction...
July 2016: Oncology Letters
Tobias Seitz, Peng Fu, Franz-Lucas Haut, Lutz Adam, Marija Habicht, Dieter Lentz, John B MacMillan, Mathias Christmann
An annulation of arylthioamides with 3-bromopyruvic acid chloride to 5-hydroxy-4H-1,3-thiazin-4-ones has been developed. The initial condensation affords two regioisomeric thiazolinone intermediates in a temperature-dependent manner. The synthesis of the 2-aminophenylthiazinone derivative led to the revision of the previously proposed structure of thiasporine A. Synthesis of the revised structure and NMR analysis revealed that thiasporine A had been isolated as a carboxylate.
July 1, 2016: Organic Letters
Xingyu Guo, Xiaodong Zhang, Tingan Wang, Shulin Xian, Yunfei Lu
Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803...
June 17, 2016: Biochemical and Biophysical Research Communications
Amin Huang, Huai-Qiang Ju, Kaiyan Liu, Guilian Zhan, Daolu Liu, Shijun Wen, Guillermo Garcia-Manero, Peng Huang, Yumin Hu
Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction...
July 28, 2016: Cancer Letters
Douglas Jardim-Messeder, Fabiana Moreira-Pacheco
BACKGROUND/AIM: 3-bromopyruvate (3BrPA) is an antitumor agent able to inhibit aerobic glycolysis and oxidative phosphorylation, therefore inducing cell death. However, cancer cells are also highly dependent of glutaminolysis and tricarboxylic acid cycle (TCA) regarding survival and 3BrPA action in these metabolic routes is poorly understood. MATERIALS AND METHODS: The effect of 3BrPA was characterized in mice liver and kidney mitochondria, as well as in human HepG2 cells...
May 2016: Anticancer Research
Izabela Sadowska-Bartosz, Rafal Szewczyk, Lukasz Jaremko, Mariusz Jaremko, Grzegorz Bartosz
BACKGROUND: 3-Bromopyruvic acid (3-BP), a glycolytic inhibitor and a promising anticancer compound, induces oxidative stress and depletes cells of glutathione (GSH). The causes of GSH loss remain unclear. The aim of this study was to ascertain whether 3-BP forms a conjugate with glutathione. METHODS: GSH was incubated with various amounts of 3-BP and the extent of reaction was titrated with (1)H NMR and (1)H-(1)H NMR. The reaction outcome was identified by MS/MS...
April 2016: Pharmacological Reports: PR
Paweł Lis, Paweł Jurkiewicz, Magdalena Cal-Bąkowska, Young H Ko, Peter L Pedersen, Andre Goffeau, Stanisław Ułaszewski
In this study the detailed characteristic of the anti-cancer agent 3-bromopyruvate (3-BP) activity in the yeast Saccharomyces cerevisiae model is described, with the emphasis on its influence on energetic metabolism of the cell. It shows that 3-BP toxicity in yeast is strain-dependent and influenced by the glucose-repression system. Its toxic effect is mainly due to the rapid depletion of intracellular ATP. Moreover, lack of the Whi2p phosphatase results in strongly increased sensitivity of yeast cells to 3-BP, possibly due to the non-functional system of mitophagy of damaged mitochondria through the Ras-cAMP-PKA pathway...
March 1, 2016: Oncotarget
Ricard Garcia-Carbonell, Ajit S Divakaruni, Alessia Lodi, Ildefonso Vicente-Suarez, Arindam Saha, Hilde Cheroutre, Gerry R Boss, Stefano Tiziani, Anne N Murphy, Monica Guma
OBJECTIVE: Up-regulation of glucose metabolism has been implicated not only in tumor cell growth but also in immune cells upon activation. However, little is known about the metabolite profile in rheumatoid arthritis (RA), particularly in fibroblast-like synoviocytes (FLS). This study was undertaken to evaluate whether changes in glucose metabolism in RA FLS could play a role in inflammation and joint damage. METHODS: Synovium and FLS were obtained from patients with RA and patients with osteoarthritis (OA)...
July 2016: Arthritis & Rheumatology
Nelson Ho, Jodi Morrison, Andreza Silva, Brenda L Coomber
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis...
2016: Bioscience Reports
Ewa Kwiatkowska, Martyna Wojtala, Agnieszka Gajewska, Mirosław Soszyński, Grzegorz Bartosz, Izabela Sadowska-Bartosz
Novel approaches to cancer chemotherapy employ metabolic differences between normal and tumor cells, including the high dependence of cancer cells on glycolysis ("Warburg effect"). 3-Bromopyruvate (3-BP), inhibitor of glycolysis, belongs to anticancer drugs basing on this principle. 3-BP was tested for its capacity to kill human non-invasive MCF-7 and invasive MDA-MB-231 breast cancer cells. We found that 3-BP was more toxic for MDA-MB-231 cells than for MCF-7 cells. In both cell lines, a statistically significant decrease of ATP and glutathione was observed in a time- and 3-BP concentration-dependent manner...
February 2016: Journal of Bioenergetics and Biomembranes
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"