Read by QxMD icon Read

Oriented Cell Division

Jacques Pécréaux, Stefanie Redemann, Zahraa Alayan, Benjamin Mercat, Sylvain Pastezeur, Carlos Garzon-Coral, Anthony A Hyman, Jonathon Howard
Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents of the mother cell are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early Caenorhabditis elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution...
October 18, 2016: Biophysical Journal
Robert Sablowski
Plant tissue growth requires the interdependent cellular processes of cytoplasmic growth, cell wall extension and cell division, but the feedbacks that link these processes are poorly understood. Recent papers have revealed developmentally regulated coupling between plant cell growth and progression through both mitotic cycles and endocycles. Modeling has given insight into the effects of cell geometry and tissue mechanics on the orientation of cell divisions. Developmental inputs by auxin have been highlighted in the control of cell turgor, vacuole function and the microtubule dynamics that underlies oriented growth and division...
October 7, 2016: Current Opinion in Plant Biology
Youguang Luo, Jie Ran, Songbo Xie, Yunfan Yang, Jie Chen, Shanshan Li, Wenqing Shui, Dengwen Li, Min Liu, Jun Zhou
Orientation and positioning of the mitotic spindle are involved in dictating cell division axis and cleavage site, and play important roles in cell fate determination and tissue morphogenesis. However, how spindle movement is controlled to achieve a defined alignment within the dividing cell is not fully understood. Here, we describe an unexpected role for apoptosis signal-regulating kinase 1 (ASK1) in regulating spindle behavior. We find that ASK1 is required for proper mitotic progression and daughter cell adhesion to the substratum...
2016: Cell Discovery
Kyle M Loh, Renée van Amerongen, Roel Nusse
There were multiple prerequisites to the evolution of multicellular animal life, including the generation of multiple cell fates ("cellular diversity") and their patterned spatial arrangement ("spatial form"). Wnt proteins operate as primordial symmetry-breaking signals. By virtue of their short-range nature and their capacity to activate both lineage-specifying and cell-polarizing intracellular signaling cascades, Wnts can polarize cells at their site of contact, orienting the axis of cell division while simultaneously programming daughter cells to adopt diverging fates in a spatially stereotyped way...
September 26, 2016: Developmental Cell
Jianjun Luo, Xiexiong Deng, Christopher Buehl, Xinjing Xu, Min-Hao Kuo
To ensure genome stability during cell division, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies before segregation. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome bi-orientation. In budding yeast, the residue Gly44 of histone H3 is critical for retaining the conserved Shugoshin protein Sgo1p at the pericentromeres for monitoring the tension status during mitosis. Studies carried out in this work showed that Lys42, Gly44, and Thr45 of H3 form the core of a tension sensing motif, TSM...
September 26, 2016: Genetics
Stefano Bencivenga, Antonio Serrano-Mislata, Max Bush, Samantha Fox, Robert Sablowski
The origin of the stem is a major but poorly understood aspect of plant development, partly because the stem initiates in a relatively inaccessible region of the shoot apical meristem called the rib zone (RZ). We developed quantitative 3D image analysis and clonal analysis tools, which revealed that the Arabidopsis homeodomain protein REPLUMLESS (RPL) establishes distinct patterns of oriented cell division and growth in the central and peripheral regions of the RZ. A genome-wide screen for target genes connected RPL directly to many of the key shoot development pathways, including the development of organ boundaries; accordingly, mutation of the organ boundary gene LIGHT-SENSITIVE HYPOCOTYL 4 restored RZ function and stem growth in the rpl mutant...
September 14, 2016: Developmental Cell
Jing Zhao, Meng-Xiang Sun
In angiosperm, asymmetric zygote division is critical for embryogenesis. The molecular mechanism underlying this process has gained a great attention recently. Some players involve in the control of both accurate position and correct orientation of zygote division plane have been found, which provide useful clues for the extensive investigations. It is getting clear that both internal and external factors are involved in this complex regulatory mechanism and the asymmetric zygote division seems with great impact in cell fate determination and embryo pattern formation...
September 23, 2016: Plant Signaling & Behavior
Elena Kozgunova, Tetsuya Higashiyama, Daisuke Kurihara
Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors...
September 23, 2016: Plant Signaling & Behavior
Jun-Chao Wang, Hong Lv, Ke-Liang Wu, Yun-Shan Zhang, Hai-Ning Luo, Zi-Jiang Chen
Mouse oocyte meiotic division requires the establishment of asymmetries in the oocyte before division, indicating the presence of polarity-establishing molecules. During mouse oocyte maturation proper orientation and positioning of the meiotic spindle at the oocyte cortex, as well as polarity in the oocyte cytoplasm and its oolemma, are necessary for the formation of functional haploid oocytes. Discs large homologue 1 (Dlg1) protein is a conserved protein that regulates cell polarity. In the present study, we found that Dlg1 was expressed at different stages of oocyte development...
September 21, 2016: Reproduction, Fertility, and Development
Nicolas Kral, Alexandra Hanna Ougolnikova, Giovanni Sena
In plants, shoot and root regeneration can be induced in the distinctive conditions of tissue culture (in vitro) but is also observed in intact individuals (in planta) recovering from tissue damage. Roots, for example, can regenerate their fully excised meristems in planta, even in mutants with impaired apical stem cell niches. Unfortunately, to date a comprehensive understanding of regeneration in plants is still missing. Here, we provide evidence that an imposed electric field can perturb apical root regeneration in Arabidopsis...
June 2016: Regeneration
Ritsuko Morita, Miho Kihira, Yousuke Nakatsu, Yohei Nomoto, Miho Ogawa, Kazumasa Ohashi, Kensaku Mizuno, Tetsuhiko Tachikawa, Yukitaka Ishimoto, Yoshihiro Morishita, Takashi Tsuji
The morphologies of ectodermal organs are shaped by appropriate combinations of several deformation modes, such as invagination and anisotropic tissue elongation. However, how multicellular dynamics are coordinated during deformation processes remains to be elucidated. Here, we developed a four-dimensional (4D) analysis system for tracking cell movement and division at a single-cell resolution in developing tooth epithelium. The expression patterns of a Fucci probe clarified the region- and stage-specific cell cycle patterns within the tooth germ, which were in good agreement with the pattern of the volume growth rate estimated from tissue-level deformation analysis...
2016: PloS One
Marta Gai, Federico T Bianchi, Cristiana Vagnoni, Fiammetta Vernì, Silvia Bonaccorsi, Selina Pasquero, Gaia E Berto, Francesco Sgrò, Alessandra Ma Chiotto, Laura Annaratone, Anna Sapino, Anna Bergo, Nicoletta Landsberger, Jacqueline Bond, Wieland B Huttner, Ferdinando Di Cunto
Correct orientation of cell division is considered an important factor for the achievement of normal brain size, as mutations in genes that affect this process are among the leading causes of microcephaly. Abnormal spindle orientation is associated with reduction of the neuronal progenitor symmetric divisions, premature cell cycle exit, and reduced neurogenesis. This mechanism has been involved in microcephaly resulting from mutation of ASPM, the most frequently affected gene in autosomal recessive human primary microcephaly (MCPH), but it is presently unknown how ASPM regulates spindle orientation...
October 2016: EMBO Reports
Huaibiao Li, Lucien Frappart, Jurgen Moll, Anne Winkler, Torsten Kroll, Jana Hamann, Iris Kufferath, Marco Groth, Stefan Taudien, Moritz Schütte, Marie-Laure Yaspo, Heike Heuer, Bodo M H Lange, Matthias Platzer, Kurt Zatloukal, Peter Herrlich, Aspasia Ploubidou
Hypofertility is a risk factor for the development of testicular germ cell tumors (TGCTs), but the initiating event linking these pathologies is unknown. We hypothesized that excessive planar division of undifferentiated germ cells promotes their self-renewal and TGCT development. However, our results obtained from mouse models and seminoma patients demonstrated the opposite. Defective planar divisions of undifferentiated germ cells caused their premature exit from the seminiferous tubule niche, resulting in germ cell depletion, hypofertility, intratubular germ cell neoplasia and seminoma development...
August 19, 2016: Cancer Research
Yukiko M Yamashita
Invaginations in the membranes of embryonic cells appear to orient cell division in sea squirts.
2016: ELife
Takefumi Negishi, Naoyuki Miyazaki, Kazuyoshi Murata, Hitoyoshi Yasuo, Naoto Ueno
In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination...
2016: ELife
Hailong Yan, Dan Chen, Yifan Wang, Yang Sun, Jing Zhao, Mengxiang Sun, Xiongbo Peng
Ribosomal proteins are involved in numerous essential cell activities in plants. However, the regulatory role in specific plant developmental processes has not yet been fully elucidated. Here we identified the new ribosomal protein L18aB, which is specifically involved in sexual reproduction and plays a critical role in male gametophyte development and embryo pattern formation. In rpl18aB mutant plants, the mature pollen grains can germinate normally, but their competitiveness for growing in the style is significantly reduced...
2016: Scientific Reports
Qiuyue Chen, Bray Denard, Ching-En Lee, Sungwon Han, James S Ye, Jin Ye
TM4SF20 (transmembrane 4 L6 family 20) is a polytopic membrane protein that inhibits proteolytic processing of CREB3L1 (cAMP response element-binding protein 3-like 1), a membrane-bound transcription factor that blocks cell division and activates collagen synthesis. Here we report that ceramide stimulates CREB3L1 cleavage by inverting the orientation of TM4SF20 in membranes. In the absence of ceramide, the N terminus of the first transmembrane helix of TM4SF20 is inserted into the endoplasmic reticulum (ER) lumen...
August 18, 2016: Molecular Cell
Amin Doostmohammadi, Sumesh P Thampi, Julia M Yeomans
Morphological trends in growing colonies of living cells are at the core of physiological and evolutionary processes. Using active gel equations, which include cell division, we show that shape changes during the growth can be regulated by the dynamics of topological defects in the orientation of cells. The friction between the dividing cells and underlying substrate drives anisotropic colony shapes toward more isotropic morphologies, by mediating the number density and velocity of topological defects. We show that the defects interact with the interface at a specific interaction range, set by the vorticity length scale of flows within the colony, and that the cells predominantly reorient parallel to the interface due to division-induced active stresses...
July 22, 2016: Physical Review Letters
Marketa Kaucka, Evgeny Ivashkin, Daniel Gyllborg, Tomas Zikmund, Marketa Tesarova, Jozef Kaiser, Meng Xie, Julian Petersen, Vassilis Pachnis, Silvia K Nicolis, Tian Yu, Paul Sharpe, Ernest Arenas, Hjalmar Brismar, Hans Blom, Hans Clevers, Ueli Suter, Andrei S Chagin, Kaj Fried, Andreas Hellander, Igor Adameyko
Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face...
August 2016: Science Advances
Jean-Léon Maître, Hervé Turlier, Rukshala Illukkumbura, Björn Eismann, Ritsuya Niwayama, François Nédélec, Takashi Hiiragi
During pre-implantation development, the mammalian embryo self-organizes into the blastocyst, which consists of an epithelial layer encapsulating the inner-cell mass (ICM) giving rise to all embryonic tissues. In mice, oriented cell division, apicobasal polarity and actomyosin contractility are thought to contribute to the formation of the ICM. However, how these processes work together remains unclear. Here we show that asymmetric segregation of the apical domain generates blastomeres with different contractilities, which triggers their sorting into inner and outer positions...
August 18, 2016: Nature
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"