Read by QxMD icon Read


Anita Murer, Donal McHugh, Nicole Caduff, Jens Kalchschmidt, Mario Barros, Andrea Zbinden, Riccarda Capaul, Gerald Niedobitek, Martin Allday, Obinna Chijioke, Christian Münz
The oncogenic Epstein Barr virus (EBV) infects the majority of the human population and usually persists within its host for life without symptoms. The EBV oncoproteins nuclear antigen 3A (EBNA3A) and 3C (EBNA3C) are required for B cell transformation in vitro and are expressed in EBV associated immunoblastic lymphomas in vivo. In order to address the necessity of EBNA3A and EBNA3C for persistent EBV infection in vivo, we infected NOD-scid γcnull mice with reconstituted human immune system components (huNSG mice) with recombinant EBV mutants devoid of EBNA3A or EBNA3C expression...
April 2018: PLoS Pathogens
Christine T Styles, Kostas Paschos, Robert E White, Paul J Farrell
The Epstein-Barr nuclear antigen 3 (EBNA3) family of proteins, comprising EBNA3A, EBNA3B, and EBNA3C, play pivotal roles in the asymptomatic persistence and life-long latency of Epstein-Barr virus (EBV) in the worldwide human population. EBNA3-mediated transcriptional reprogramming of numerous host cell genes promotes in vitro B cell transformation and EBV persistence in vivo. Despite structural and sequence similarities, and evidence of substantial cooperative activity between the EBNA3 proteins, they perform quite different, often opposing functions...
March 17, 2018: Pathogens
Quentin Bazot, Kostas Paschos, Martin J Allday
Epstein-Barr virus (EBV) establishes latent infection in human B cells and is associated with a wide range of cancers. The EBV nuclear antigen 3 (EBNA3) family proteins are critical for B cell transformation and function as transcriptional regulators. It is well established that EBNA3A and EBNA3C cooperate in the regulation of cellular genes. Here, we demonstrate that the gene STK39 is repressed only by EBNA3A. This is the first example of a gene regulated only by EBNA3A in EBV-transformed lymphoblastoid cell lines (LCLs) without the help of EBNA3C...
April 1, 2018: Journal of Virology
Michelle J West
The oncogenic Epstein-Barr virus (EBV) growth transforms B cells and drives lymphoma and carcinoma development. The virus encodes four key transcription factors (EBNA2, EBNA3A, EBNA3B and EBNA3C) that hijack host cell factors to bind gene control elements and reprogramme infected B cells. These viral factors predominantly target long-range enhancers to alter the expression of host cell genes that control B cell growth and survival and facilitate virus persistence. Enhancer and super-enhancer binding by these EBNAs results in large-scale reorganisation of three-dimensional enhancer-promoter architecture to drive the overexpression of oncogenes, the silencing of tumour suppressors and the modulation of transcription, cell-cycle progression, migration and adhesion...
October 2017: Current Opinion in Virology
Christine T Styles, Quentin Bazot, Gillian A Parker, Robert E White, Kostas Paschos, Martin J Allday
Mature human B cells infected by Epstein-Barr virus (EBV) become activated, grow, and proliferate. If the cells are infected ex vivo, they are transformed into continuously proliferating lymphoblastoid cell lines (LCLs) that carry EBV DNA as extra-chromosomal episomes, express 9 latency-associated EBV proteins, and phenotypically resemble antigen-activated B-blasts. In vivo similar B-blasts can differentiate to become memory B cells (MBC), in which EBV persistence is established. Three related latency-associated viral proteins EBNA3A, EBNA3B, and EBNA3C are transcription factors that regulate a multitude of cellular genes...
August 2017: PLoS Biology
Yonggang Pei, Shuvomoy Banerjee, Hem Chandra Jha, Zhiguo Sun, Erle S Robertson
The latent EBV nuclear antigen 3C (EBNA3C) is required for transformation of primary human B lymphocytes. Most mature B-cell malignancies originate from malignant transformation of germinal center (GC) B-cells. The GC reaction appears to have a role in malignant transformation, in which a major player of the GC reaction is Bcl6, a key regulator of this process. We now demonstrate that EBNA3C contributes to B-cell transformation by targeted degradation of Bcl6. We show that EBNA3C can physically associate with Bcl6...
July 2017: PLoS Pathogens
Kostas Paschos, Quentin Bazot, Guiyi Ho, Gillian A Parker, Jonathan Lees, Geraint Barton, Martin J Allday
ChIP-seq performed on lymphoblastoid cell lines (LCLs), expressing epitope-tagged EBNA3A, EBNA3B or EBNA3C from EBV-recombinants, revealed important principles of EBNA3 binding to chromatin. When combined with global chromatin looping data, EBNA3-bound loci were found to have a singular character, each directly associating with either EBNA3-repressed or EBNA3-activated genes, but not with both. EBNA3A and EBNA3C showed significant association with repressed and activated genes. Significant direct association for EBNA3B loci could only be shown with EBNA3B-repressed genes...
March 17, 2017: Nucleic Acids Research
Yonggang Pei, Shuvomoy Banerjee, Zhiguo Sun, Hem Chandra Jha, Abhik Saha, Erle S Robertson
Epstein-Barr virus (EBV) is considered a ubiquitous herpesvirus with the ability to cause latent infection in humans worldwide. EBV-association is evidently linked to different types of human malignancies, mainly of epithelial and lymphoid origin. Of interest is the EBV nuclear antigen 3C (EBNA3C) which is critical for EBV-mediated immortalization. Recently, EBNA3C was shown to bind the E2F1 transcription regulator. The E2F transcription factors have crucial roles in various cellular functions, including cell cycle, DNA replication, DNA repair, cell mitosis, and cell fate...
August 2016: PLoS Pathogens
C David Wood, Hildegonda Veenstra, Sarika Khasnis, Andrea Gunnell, Helen M Webb, Claire Shannon-Lowe, Simon Andrews, Cameron S Osborne, Michelle J West
Lymphomagenesis in the presence of deregulated MYC requires suppression of MYC-driven apoptosis, often through downregulation of the pro-apoptotic BCL2L11 gene (Bim). Transcription factors (EBNAs) encoded by the lymphoma-associated Epstein-Barr virus (EBV) activate MYC and silence BCL2L11. We show that the EBNA2 transactivator activates multiple MYC enhancers and reconfigures the MYC locus to increase upstream and decrease downstream enhancer-promoter interactions. EBNA2 recruits the BRG1 ATPase of the SWI/SNF remodeller to MYC enhancers and BRG1 is required for enhancer-promoter interactions in EBV-infected cells...
August 4, 2016: ELife
Jens S Kalchschmidt, Rachael Bashford-Rogers, Kostas Paschos, Adam C T Gillman, Christine T Styles, Paul Kellam, Martin J Allday
Activation-induced cytidine deaminase (AID), the enzyme responsible for induction of sequence variation in immunoglobulins (Igs) during the process of somatic hypermutation (SHM) and also Ig class switching, can have a potent mutator phenotype in the development of lymphoma. Using various Epstein-Barr virus (EBV) recombinants, we provide definitive evidence that the viral nuclear protein EBNA3C is essential in EBV-infected primary B cells for the induction of AID mRNA and protein. Using lymphoblastoid cell lines (LCLs) established with EBV recombinants conditional for EBNA3C function, this was confirmed, and it was shown that transactivation of the AID gene (AICDA) is associated with EBNA3C binding to highly conserved regulatory elements located proximal to and upstream of the AICDA transcription start site...
May 30, 2016: Journal of Experimental Medicine
Sanket Kumar Shukla, Hem Chandra Jha, Darine W El-Naccache, Erle S Robertson
Epstein-Barr virus (EBV), a gamma herpes virus is associated with B-cell malignancies. EBNA-3C is critical for in vitro primary B-cell transformation. Interestingly, the N terminal domain of EBNA3C which contains residues 130-159, interacts with various cellular proteins, such as p53, Mdm2, CyclinD1/Cdk6 complex, and E2F1. In the current reverse genetics study, we deleted the residues 130-159 aa within EBNA3C open reading frame (ORF) by BACmid recombinant engineering methodology. Our experiments demonstrated that deletion of the 130-159 aa showed a reduction in cell proliferation...
April 5, 2016: Oncotarget
Andrea Gunnell, Helen M Webb, C David Wood, Michael J McClellan, Billy Wichaidit, Bettina Kempkes, Richard G Jenner, Cameron Osborne, Paul J Farrell, Michelle J West
In B cells infected by the cancer-associated Epstein-Barr virus (EBV), RUNX3 and RUNX1 transcription is manipulated to control cell growth. The EBV-encoded EBNA2 transcription factor (TF) activates RUNX3 transcription leading to RUNX3-mediated repression of the RUNX1 promoter and the relief of RUNX1-directed growth repression. We show that EBNA2 activates RUNX3 through a specific element within a -97 kb super-enhancer in a manner dependent on the expression of the Notch DNA-binding partner RBP-J. We also reveal that the EBV TFs EBNA3B and EBNA3C contribute to RUNX3 activation in EBV-infected cells by targeting the same element...
June 2, 2016: Nucleic Acids Research
Jens S Kalchschmidt, Adam C T Gillman, Kostas Paschos, Quentin Bazot, Bettina Kempkes, Martin J Allday
It is well established that Epstein-Barr virus nuclear antigen 3C (EBNA3C) can act as a potent repressor of gene expression, but little is known about the sequence of events occurring during the repression process. To explore further the role of EBNA3C in gene repression-particularly in relation to histone modifications and cell factors involved-the three host genes previously reported as most robustly repressed by EBNA3C were investigated. COBLL1, a gene of unknown function, is regulated by EBNA3C alone and the two co-regulated disintegrin/metalloproteases, ADAM28 and ADAMDEC1 have been described previously as targets of both EBNA3A and EBNA3C...
January 2016: PLoS Pathogens
Anqi Wang, Rene Welch, Bo Zhao, Tram Ta, Sündüz Keleş, Eric Johannsen
UNLABELLED: Latent infection of B lymphocytes by Epstein-Barr virus (EBV) in vitro results in their immortalization into lymphoblastoid cell lines (LCLs); this latency program is controlled by the EBNA2 viral transcriptional activator, which targets promoters via RBPJ, a DNA binding protein in the Notch signaling pathway. Three other EBNA3 proteins (EBNA3A, EBNA3B, and EBNA3C) interact with RBPJ to regulate cell gene expression. The mechanism by which EBNAs regulate different genes via RBPJ remains unclear...
December 30, 2015: Journal of Virology
Lingling Sun, Zhenzhen Zhao, Song Liu, Xia Liu, Zhifu Sun, Bing Luo
Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is the only viral protein expressed in all EBV-positive tumors as it is essential for the maintenance, replication and transcription of the virus genome. According to the polymorphism of residue 487 in EBNA1 gene, EBV isolates can be classified into five subtypes: P-ala, P-thr, V-val, V-leu and V-pro. Whether these EBNA1 subtypes contribute to different tissue tropism of EBV and are consequently associated with certain malignancies remain to be determined. To elucidate the relationship, one hundred and ten EBV-positive lymphoma tissues of different types from Northern China, a non-NPC endemic area, were tested for the five subtypes by nested-PCR and DNA sequencing...
2015: PloS One
Martin J Allday, Quentin Bazot, Robert E White
Epstein-Barr virus nuclear antigens EBNA3A , EBNA3B and EBNA3C are a family of three large latency-associated proteins expressed in B cells induced to proliferate by the virus. Together with the other nuclear antigens (EBNA-LP, EBNA2 and EBNA1), they are expressed from a polycistronic transcription unit that is probably unique to B cells. However, compared with the other EBNAs, hitherto the EBNA3 proteins were relatively neglected and their roles in EBV biology rather poorly understood. In recent years, powerful new technologies have been used to show that these proteins are central to the latency of EBV in B cells, playing major roles in reprogramming the expression of host genes affecting cell proliferation, survival, differentiation and immune surveillance...
2015: Current Topics in Microbiology and Immunology
Hem Chandra Jha, Sanket Kumar Shukla, Jie Lu, Mahadesh Prasad Aj, Shuvomoy Banerjee, Erle S Robertson
Epstein-Barr virus (EBV) is an oncogenic gammaherpes virus which is linked to pathogenesis of several human lymphatic malignancies. The EBV essential latent antigen EBNA3C is critical for efficient conversion of primary human B-lymphocytes to lymphoblastic cell lines and for continued LCL growth. EBNA3C, an EBV latent antigen with oncogenic potential can bind and regulate the functions of a wide range of cellular transcription factors. In our current reverse genetics study, we deleted the full length EBNA3C, and independently the RBP-Jκ and Nm23-H1 binding sites within EBNA3C using BACmid recombinant engineering methodology...
October 6, 2015: Oncotarget
Justyna Nowakowska, Claudia Stuehler, Adrian Egli, Manuel Battegay, Georg Rauser, Glenn Robert Bantug, Christian Brander, Christoph Hess, Nina Khanna
BACKGROUND AIMS: Epstein-Barr virus (EBV)-associated post-transplant lymphoproliferative disorders (PTLD) belong to the most dreaded complications of immunosuppression. The efficacy of EBV-specific T-cell transfer for PTLD has been previously shown, yet the optimal choice of EBV-derived antigens inducing polyclonal CD4(+) and CD8(+) T cells that cover a wide range of human leukocyte antigen types and efficiently control PTLD remains unclear. METHODS: A pool of 125 T-cell epitopes from seven latent and nine lytic EBV-derived proteins (EBVmix) and peptide pools of EBNA1, EBNA3c, LMP2a and BZLF1 were used to determine T-cell frequencies and to isolate T cells through the use of the interferon (IFN)-γ cytokine capture system...
September 2015: Cytotherapy
Quentin Bazot, Kostas Paschos, Lenka Skalska, Jens S Kalchschmidt, Gillian A Parker, Martin J Allday
We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters--widely reported to have cell transformation-associated activity--are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours--including lymphoma/leukemia...
July 2015: PLoS Pathogens
Marco Neves, Joana Marinho-Dias, Joana Ribeiro, Marlene Esteves, Elsa Maltez, Inês Baldaque, Eduardo Breda, Eurico Monteiro, Rui Medeiros, Hugo Sousa
Variations in the genome sequence of Epstein-Barr Virus (EBV) are thought to lead to differential interaction with host cells, immune evasion, and transformation. The discussion regarding EBV strains as having a geographic or disease-association has been increasing and the majority of studies are performed in Asiatic populations. We developed a case-control study with 139 individuals, including 96 subjects with different malignancies and 43 healthy individuals, from the North region of Portugal. We have used PCR protocols for the characterization of EBV strains (type A or B) based on EBNA3C genome variation and for the LMP1 30bp-deletion variants (wt-LMP1 or del-LMP1)...
August 2015: Journal of Medical Virology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"