Read by QxMD icon Read

majorana fermions

Bruno Mera, Chrysoula Vlachou, Nikola Paunković, Vítor R Vieira
We study the behavior of the Uhlmann connection in systems of fermions undergoing phase transitions. In particular, we analyze some of the paradigmatic cases of topological insulators and superconductors in one dimension, as well as the BCS theory of superconductivity in three dimensions. We show that the Uhlmann connection signals phase transitions in which the eigenbasis of the state of the system changes. Moreover, using the established fidelity approach and the study of the edge states, we show the absence of thermally driven phase transitions in the case of topological insulators and superconductors...
July 7, 2017: Physical Review Letters
Qing Lin He, Lei Pan, Alexander L Stern, Edward C Burks, Xiaoyu Che, Gen Yin, Jing Wang, Biao Lian, Quan Zhou, Eun Sang Choi, Koichi Murata, Xufeng Kou, Zhijie Chen, Tianxiao Nie, Qiming Shao, Yabin Fan, Shou-Cheng Zhang, Kai Liu, Jing Xia, Kang L Wang
Majorana fermion is a hypothetical particle that is its own antiparticle. We report transport measurements that suggest the existence of one-dimensional chiral Majorana fermion modes in the hybrid system of a quantum anomalous Hall insulator thin film coupled with a superconductor. As the external magnetic field is swept, half-integer quantized conductance plateaus are observed at the locations of magnetization reversals, giving a distinct signature of the Majorana fermion modes. This transport signature is reproducible over many magnetic field sweeps and appears at different temperatures...
July 21, 2017: Science
Vlad S Pribiag
No abstract text is available yet for this article.
July 21, 2017: Science
Ying-Hai Wu, Tao Shi, Jainendra K Jain
The current proposals for producing non-Abelian anyons and Majorana particles, which are neither fermions nor bosons, are primarily based on the realization of topological superconductivity in two dimensions. We show theoretically that the unique Landau level structure of bilayer graphene provides a new possible avenue for achieving such exotic particles. Specifically, we demonstrate the feasibility of a "parton" fractional quantum Hall (FQH) state, which supports non-Abelian particles without the usual topological superconductivity...
July 5, 2017: Nano Letters
B Q Lv, Z-L Feng, Q-N Xu, X Gao, J-Z Ma, L-Y Kong, P Richard, Y-B Huang, V N Strocov, C Fang, H-M Weng, Y-G Shi, T Qian, H Ding
In quantum field theory, Lorentz invariance leads to three types of fermion-Dirac, Weyl and Majorana. Although the existence of Weyl and Majorana fermions as elementary particles in high-energy physics is debated, all three types of fermion have been proposed to exist as low-energy, long-wavelength quasiparticle excitations in condensed-matter systems. The existence of Dirac and Weyl fermions in condensed-matter systems has been confirmed experimentally, and that of Majorana fermions is supported by various experiments...
June 29, 2017: Nature
Bitan Roy, Yahya Alavirad, Jay D Sau
We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s-wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions...
June 2, 2017: Physical Review Letters
I I Klimovskikh, A M Shikin, M M Otrokov, A Ernst, I P Rusinov, O E Tereshchenko, V A Golyashov, J Sánchez-Barriga, A Yu Varykhalov, O Rader, K A Kokh, E V Chulkov
One of the most promising platforms for spintronics and topological quantum computation is the two-dimensional electron gas (2DEG) with strong spin-orbit interaction and out-of-plane ferromagnetism. In proximity to an s-wave superconductor, such 2DEG may be driven into a topologically non-trivial superconducting phase, predicted to support zero-energy Majorana fermion modes. Using angle-resolved photoemission spectroscopy and ab initio calculations, we study the 2DEG at the surface of the vanadium-doped polar semiconductor with a giant Rashba-type splitting, BiTeI...
June 13, 2017: Scientific Reports
Arnab Banerjee, Jiaqiang Yan, Johannes Knolle, Craig A Bridges, Matthew B Stone, Mark D Lumsden, David G Mandrus, David A Tennant, Roderich Moessner, Stephen E Nagler
The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL...
June 9, 2017: Science
Jelena Stajic
No abstract text is available yet for this article.
June 9, 2017: Science
F Iemini, L Mazza, L Fallani, P Zoller, R Fazio, M Dalmonte
We show how angular momentum conservation can stabilize a symmetry-protected quasitopological phase of matter supporting Majorana quasiparticles as edge modes in one-dimensional cold atom gases. We investigate a number-conserving four-species Hubbard model in the presence of spin-orbit coupling. The latter reduces the global spin symmetry to an angular momentum parity symmetry, which provides an extremely robust protection mechanism that does not rely on any coupling to additional reservoirs. The emergence of Majorana edge modes is elucidated using field theory techniques, and corroborated by density-matrix-renormalization-group simulations...
May 19, 2017: Physical Review Letters
Silu Huang, Jisun Kim, W A Shelton, E W Plummer, Rongying Jin
The subject of topological materials has attracted immense attention in condensed-matter physics because they host new quantum states of matter containing Dirac, Majorana, or Weyl fermions. Although Majorana fermions can only exist on the surface of topological superconductors, Dirac and Weyl fermions can be realized in both 2D and 3D materials. The latter are semimetals with Dirac/Weyl cones either not tilted (type I) or tilted (type II). Although both Dirac and Weyl fermions have massless nature with the nontrivial Berry phase, the formation of Weyl fermions in 3D semimetals require either time-reversal or inversion symmetry breaking to lift degeneracy at Dirac points...
June 13, 2017: Proceedings of the National Academy of Sciences of the United States of America
Sujit Sarkar
An attempt is made to understand the topological quantum phase transition, emergence of relativistic modes and local topological order of light in a strongly interacting light-matter system. We study this system, in a one dimensional array of nonlinear cavities. Topological quantum phase transition occurs with massless excitation only for the finite detuning process. We present a few results based on the exact analytical calculations along with the physical explanations. We observe the emergence of massive Majorana fermion mode at the topological state, massless Majorana-Weyl fermion mode during the topological quantum phase transition and Dirac fermion mode for the non-topological state...
May 12, 2017: Scientific Reports
Fernando Iemini, Christophe Mora, Leonardo Mazza
Parafermions are emergent excitations that generalize Majorana fermions and can also realize topological order. In this Letter, we present a nontrivial and quasi-exactly-solvable model for a chain of parafermions in a topological phase. We compute and characterize the ground-state wave functions, which are matrix-product states and have a particularly elegant interpretation in terms of Fock parafermions, reflecting the factorized nature of the ground states. Using these wave functions, we demonstrate analytically several signatures of topological order...
April 28, 2017: Physical Review Letters
Huimin Chen, Lin Li, Qinqing Zhu, Jinhu Yang, Bin Chen, Qianhui Mao, Jianhua Du, Hangdong Wang, Minghu Fang
The so-called Dirac materials such as graphene and topological insulators are a new class of matter different from conventional metals and (doped) semiconductors. Superconductivity induced by doing or applying pressure in these systems may be unconventional, or host mysterious Majorana fermions. Here, we report a successfully observation of pressure-induced superconductivity in an antiferromagnetic Dirac material BaMnBi2 with T c of ~4 K at 2.6 GPa. Both the higher upper critical field, μ 0 H c2(0) ~ 7 Tesla, and the measured current independent of T c precludes that superconductivity is ascribed to the Bi impurity...
May 9, 2017: Scientific Reports
Emilio Cobanera
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc.) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2...
May 8, 2017: Journal of Physics. Condensed Matter: An Institute of Physics Journal
Boris Narozhny
A quantum computer based on Majorana qubits would contain a large number of zero-energy Majorana states. This system can be modelled as a connected network of the Ising-Kitaev chains alternating the "trivial" and "topological" regions, with the zero-energy Majorana fermions localized at their interfaces. The low-energy sector of the theory describing such a network can be formulated in terms of leading-order couplings between the Majorana zero modes. I consider a minimal model exhibiting effective couplings between four Majorana zero modes - the nonuniform Ising-Kitaev chain, containing two "topological" regions separated by a "trivial" region...
May 3, 2017: Scientific Reports
Yasumasa Tsutsumi
We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions...
April 7, 2017: Physical Review Letters
Tsuneya Yoshida, Akito Daido, Youichi Yanase, Norio Kawakami
In this paper, we propose CeCoIn_{5}/YbCoIn_{5} superlattice systems as a test bed for the reduction of topological classification in free fermions. We find that the system with a quadlayer of CeCoIn_{5} shows a topological crystalline superconducting phase with the mirror Chern number eight at the noninteracting level. Furthermore, we demonstrate that in the presence of two-body interactions, gapless edge modes are no longer protected by the symmetry in the system with a quadlayer, but are protected in the system with a bilayer or trilayer...
April 7, 2017: Physical Review Letters
Mitali Banerjee, Moty Heiblum, Amir Rosenblatt, Yuval Oreg, Dima E Feldman, Ady Stern, Vladimir Umansky
The quantum of thermal conductance of ballistic (collisionless) one-dimensional channels is a unique fundamental constant. Although the quantization of the electrical conductance of one-dimensional ballistic conductors has long been experimentally established, demonstrating the quantization of thermal conductance has been challenging as it necessitated an accurate measurement of very small temperature increase. It has been accomplished for weakly interacting systems of phonons, photons and electronic Fermi liquids; however, it should theoretically also hold in strongly interacting systems, such as those in which the fractional quantum Hall effect is observed...
May 4, 2017: Nature
Hao-Hua Sun, Mei-Xiao Wang, Fengfeng Zhu, Guan-Yong Wang, Hai-Yang Ma, Zhu-An Xu, Qing Liao, Yunhao Lu, Chun-Lei Gao, Yao-Yi Li, Canhua Liu, Dong Qian, Dandan Guan, Jin-Feng Jia
Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied...
April 20, 2017: Nano Letters
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"