Read by QxMD icon Read

Lapachone AND NAD+

Hui-Ying Liu, Qing-Ran Li, Xue-Fang Cheng, Guang-Ji Wang, Hai-Ping Hao
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for a number of enzymes and regulatory proteins involved in a variety of cellular processes, including deacetylation enzyme SIRT1 which modulates several tumor suppressors such as p53 and FOXO. Herein we report that NQO1 substrates Tanshione IIA (TSA) and β-lapachone (β-lap) induced a rapid depletion of NAD(+) pool but adaptively a significant upregulation of NAMPT. NAMPT inhibition by FK866 at a nontoxic dose significantly enhanced NQO1-targeting agent-induced apoptotic cell death...
August 2016: Chinese Journal of Natural Medicines
Eduardo H G da Cruz, Molly A Silvers, Guilherme A M Jardim, Jarbas M Resende, Bruno C Cavalcanti, Igor S Bomfim, Claudia Pessoa, Carlos A de Simone, Giancarlo V Botteselle, Antonio L Braga, Divya K Nair, Irishi N N Namboothiri, David A Boothman, Eufrânio N da Silva Júnior
UNLABELLED: Selenium-containing quinone-based 1,2,3-triazoles were synthesized using click chemistry, the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition, and evaluated against six types of cancer cell lines: HL-60 (human promyelocytic leukemia cells), HCT-116 (human colon carcinoma cells), PC3 (human prostate cells), SF295 (human glioblastoma cells), MDA-MB-435 (melanoma cells) and OVCAR-8 (human ovarian carcinoma cells). Some compounds showed IC50 values < 0.3 μM. The cytotoxic potential of the quinones evaluated was also assayed using non-tumor cells, exemplified by peripheral blood mononuclear (PBMC), V79 and L929 cells...
October 21, 2016: European Journal of Medicinal Chemistry
Jin-Sun Park, Yu-Young Lee, Jisun Kim, Hyemyung Seo, Hee-Sun Kim
β-Lapachone (β-LAP) is a naturally occurring quinine that exerts a number of pharmacological actions including antibacterial, antifungal, antimalarial, and antitumor activities. In the present study, we investigated whether β-LAP has an antioxidant effect in rat primary astrocytes. β-LAP suppressed intracellular reactive oxygen species (ROS) production induced by hydrogen peroxide and inhibited astroglial cell death. It also increased astrocytic expression of phase II antioxidant enzymes such as heme oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO1), manganese superoxide dismutase (MnSOD), and catalase...
August 2016: Free Radical Biology & Medicine
Long-Shan Li, Srilakshmi Reddy, Zhen-Hua Lin, Shuangping Liu, Hyunsil Park, Stephen G Chun, William G Bornmann, Joel Thibodeaux, Jingsheng Yan, Gaurab Chakrabarti, Xian-Jin Xie, Baran D Sumer, David A Boothman, John S Yordy
Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed. NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis. β-Lap represents a novel therapeutic opportunity in HNC leading to tumor-selective lethality that will enhance the efficacy of IR...
July 2016: Molecular Cancer Therapeutics
Yougen Wu, Xue Wang, Siyu Chang, Weiqiang Lu, Mingyao Liu, Xiufeng Pang
UNLABELLED: β-Lapachone [β-lap; 3,4-dihydro-2,2-dimethyl-2H-naphthol[1,2-b]pyran-5,6-dione] is a novel anticancer drug currently under investigation in phase I/II clinical trials. However, the mechanism underlying its clinical efficacy remains unclear. In this study, we found that β-lap provoked the cleavage of heat shock protein 90 (Hsp90) in NAD(P)H: quinone oxidoreductase-1 (NQO1)-expressing lung and prostate cancer cells as well as in primary human umbilical vein endothelial cells (HUVECs)...
June 2016: Journal of Pharmacology and Experimental Therapeutics
Christophe Glorieux, Juan Marcelo Sandoval, Nicolas Dejeans, Geneviève Ameye, Hélène Antoine Poirel, Julien Verrax, Pedro Buc Calderon
AIMS: Alterations in the expression of antioxidant enzymes are associated with changes in cancer cell sensitivity to chemotherapeutic drugs (menadione and β-lapachone). Mechanisms of acquisition of resistance to pro-oxidant drugs were investigated using a model of oxidative stress-resistant MCF-7 breast cancer cells (Resox cells). MAIN METHODS: FISH experiments were performed in tumor biopsy and breast cancer cells to characterize the pattern of the NQO1 gene. SNP-arrays were conducted to detect chromosomal imbalances...
January 15, 2016: Life Sciences
Gaurab Chakrabarti, Molly A Silvers, Mariya Ilcheva, Yuliang Liu, Zachary R Moore, Xiuquan Luo, Jinming Gao, Glenda Anderson, Lili Liu, Venetia Sarode, David E Gerber, Sandeep Burma, Ralph J DeBerardinis, Stanton L Gerson, David A Boothman
UNLABELLED: Base excision repair (BER) is an essential pathway for pancreatic ductal adenocarcinoma (PDA) survival. Attempts to target this repair pathway have failed due to lack of tumor-selectivity and very limited efficacy. The NAD(P)H: Quinone Oxidoreductase 1 (NQO1) bioactivatable drug, ß-lapachone (ARQ761 in clinical form), can provide tumor-selective and enhanced synergy with BER inhibition. ß-Lapachone undergoes NQO1-dependent futile redox cycling, generating massive intracellular hydrogen peroxide levels and oxidative DNA lesions that stimulate poly(ADP-ribose) polymerase 1 (PARP1) hyperactivation...
November 25, 2015: Scientific Reports
Gaurab Chakrabarti, Zachary R Moore, Xiuquan Luo, Mariya Ilcheva, Aktar Ali, Mahesh Padanad, Yunyun Zhou, Yang Xie, Sandeep Burma, Pier P Scaglioni, Lewis C Cantley, Ralph J DeBerardinis, Alec C Kimmelman, Costas A Lyssiotis, David A Boothman
BACKGROUND: Pancreatic ductal adenocarcinomas (PDA) activate a glutamine-dependent pathway of cytosolic nicotinamide adenine dinucleotide phosphate (NADPH) production to maintain redox homeostasis and support proliferation. Enzymes involved in this pathway (GLS1 (mitochondrial glutaminase 1), GOT1 (cytoplasmic glutamate oxaloacetate transaminase 1), and GOT2 (mitochondrial glutamate oxaloacetate transaminase 2)) are highly upregulated in PDA, and among these, inhibitors of GLS1 were recently deployed in clinical trials to target anabolic glutamine metabolism...
2015: Cancer & Metabolism
Caroline S Breton, Dominique Aubry, Vanessa Ginet, Julien Puyal, Mathieu Heulot, Christian Widmann, Michel A Duchosal, Aimable Nahimana
UNLABELLED: Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H: quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively...
September 2015: Biochimie
Z Moore, G Chakrabarti, X Luo, A Ali, Z Hu, F J Fattah, R Vemireddy, R J DeBerardinis, R A Brekken, D A Boothman
Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (e.g., FK866) target the most active pathway of NAD(+) synthesis in tumor cells, but lack tumor-selectivity for use as a single agent. Reducing NAD(+) pools by inhibiting NAMPT primed pancreatic ductal adenocarcinoma (PDA) cells for poly(ADP ribose) polymerase (PARP1)-dependent cell death induced by the targeted cancer therapeutic, β-lapachone (β-lap, ARQ761), independent of poly(ADP ribose) (PAR) accumulation. β-Lap is bioactivated by NADPH:quinone oxidoreductase 1 (NQO1) in a futile redox cycle that consumes oxygen and generates high levels of reactive oxygen species (ROS) that cause extensive DNA damage and rapid PARP1-mediated NAD(+) consumption...
2015: Cell Death & Disease
Mauricio Menacho-Márquez, Carlos J Rodríguez-Hernández, M Ángeles Villaronga, Jorge Pérez-Valle, José Gadea, Borja Belandia, José R Murguía
β-Lapachone (β-lap) is a novel anticancer agent that selectively induces cell death in human cancer cells, by activation of the NQO1 NAD(P)H dehydrogenase and radical oxygen species (ROS) generation. We characterized the gene expression profile of budding yeast cells treated with β-lap using cDNA microarrays. Genes involved in tolerance to oxidative stress were differentially expressed in β-lap treated cells. β-lap treatment generated reactive oxygen species (ROS), which were efficiently blocked by dicoumarol, an inhibitor of NADH dehydrogenases...
2015: Cell Cycle
Xinpeng Ma, Xiumei Huang, Zachary Moore, Gang Huang, Jessica A Kilgore, Yiguang Wang, Suntrea Hammer, Noelle S Williams, David A Boothman, Jinming Gao
UNLABELLED: Lung cancer is one of the most lethal forms of cancer and current chemotherapeutic strategies lack broad specificity and efficacy. Recently, β-lapachone (β-lap) was shown to be highly efficacious in killing non-small cell lung cancer (NSCLC) cells regardless of their p53, cell cycle and caspase status. Pre-clinical and clinical use of β-lap (clinical form, ARQ501 or 761) is hampered by poor pharmacokinetics and toxicity due to hemolytic anemia. Here, we report the development and preclinical evaluation of β-lap prodrug nanotherapeutics consisting of diester derivatives of β-lap encapsulated in biocompatible and biodegradable poly(ethylene glycol)-b-poly(D,L-lactic acid) (PEG-b-PLA) micelles...
February 28, 2015: Journal of Controlled Release: Official Journal of the Controlled Release Society
Moon Hee Jeong, Jin Hwan Kim, Kang-Sik Seo, Tae Hwan Kwak, Woo Jin Park
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells...
November 21, 2014: Biochemical and Biophysical Research Communications
Jason Z Li, Yuebin Ke, Hara P Misra, Michael A Trush, Y Robert Li, Hong Zhu, Zhenquan Jia
UNLABELLED: Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H: quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16-F10 and hepatocellular carcinoma HepG2 cancer cells...
December 15, 2014: Toxicology and Applied Pharmacology
Yong-Hoon Kim, Jung Hwan Hwang, Kyoung-Shim Kim, Jung-Ran Noh, Gil-Tae Gang, Youngwon Seo, Ki-Hoan Nam, Tae Hwan Kwak, Hee Gu Lee, Chul-Ho Lee
BACKGROUND: Endothelial nitric oxide synthase (eNOS) is involved in blood pressure (BP) regulation through the production of nitric oxide. Sirtuin I (SIRT1), an NAD-dependent protein deacetylase, promotes vascular relaxation through deacetylation and activation of eNOS. β-Lapachone (βL) increases the cellular NAD(+)/NADH ratio by activating NAD(P)H: quinone oxidoreductase 1 (NQO1). In this study, we verified whether activation of NQO1 by βL modulates BP through regulation of eNOS acetylation in a hypertensive animal model...
January 2015: American Journal of Hypertension
H-J Kim, G-S Oh, A Shen, S-B Lee, S-K Choe, K-B Kwon, S Lee, K-S Seo, T H Kwak, R Park, H-S So
Cisplatin (cis-diaminedichloroplatinum-II) is an extensively used chemotherapeutic agent, and one of its most adverse effects is ototoxicity. A number of studies have demonstrated that these effects are related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as a key regulator of cellular energy metabolism and homeostasis. Here, we demonstrate for the first time that, in cisplatin-mediated ototoxicity, the levels and activities of SIRT1 are suppressed by the reduction of intracellular NAD(+) levels...
2014: Cell Death & Disease
Jinlei Bian, Bang Deng, Lili Xu, Xiaoli Xu, Nan Wang, Tianhan Hu, Zeyu Yao, Jianyao Du, Li Yang, Yonghua Lei, Xiang Li, Haopeng Sun, Xiaojin Zhang, Qidong You
A series of L-shaped ortho-quinone analogs were designed by analyzing the binding mode with NQO1. Metabolic studies demonstrated that compounds 2m, 2n and 2q exhibited higher metabolic rates than β-lapachone. The docking studies, which supported the rationalization of the metabolic studies, constituted a prospective rational basis for the development of optimized ortho-quinone analogs. Besides, good substrates (2m, 2n and 2r) for NQO1 showed higher selective toxicity than β-lapachone toward A549 (NQO1-rich) cancer cells versus H596 (NQO1-deficient) cells...
July 23, 2014: European Journal of Medicinal Chemistry
E J Park, K-J Min, T-J Lee, Y H Yoo, Y-S Kim, T K Kwon
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell death without caspase activation. β-Lapachone increased PI uptake and HMGB-1 release to extracellular space, which are markers of necrotic cell death. Necrostatin-1 (a RIP1 kinase inhibitor) markedly inhibited β-lapachone-induced cell death and HMGB-1 release...
2014: Cell Death & Disease
S J Byun, Y Son, H-O Pae
OBJECTIVES: AMP-activated protein kinase (AMPK) is suggested to exert cytoprotective and anti-inflammatory effects in endothelial cells, but the precise mechanisms are not fully understood. It has been reported that pharmacological activation of AMPK induces endothelial heme oxygenase-1 (HO-1) expression. β-Lapachone (BL), a well-known substrate of NAD(P)H: quinone oxidoreductase (NQO1), stimulates AMPK activation via NQO1 activation. Here we examined whether AMPK activation by BL would be linked to HO-1 expression in ECV304 endothelial cells and whether HO-1 expression could mediate the cytoprotective effect of BL...
2014: European Review for Medical and Pharmacological Sciences
Moon Hee Jeong, Nguyen Khoi Song Tran, Tae Hwan Kwak, Byung Keon Park, Chul Soon Lee, Tae-Sik Park, Young-Hoon Lee, Woo Jin Park, Dong Kwon Yang
Lipotoxic cardiomyopathy is caused by myocardial lipid accumulation and often occurs in patients with diabetes and obesity. This study investigated the effects of β-lapachone (β-lap), a natural compound that activates Sirt1 through elevation of the intracellular NAD+ level, on acyl CoA synthase (ACS) transgenic (Tg) mice, which have lipotoxic cardiomyopathy. Oral administration of β-lap to ACS Tg mice significantly attenuated heart failure and inhibited myocardial accumulation of triacylglycerol. Electron microscopy and measurement of mitochondrial complex II protein and mitochondrial DNA revealed that administration of β-lap restored mitochondrial integrity and biogenesis in ACS Tg hearts...
2014: PloS One
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"