keyword
MENU ▼
Read by QxMD icon Read
search

DMD and CAS9

keyword
https://www.readbyqxmd.com/read/28505980/creation-of-a-novel-humanized-dystrophic-mouse-model-of-duchenne-muscular-dystrophy-and-application-of-a-crispr-cas9-gene-editing-therapy
#1
Courtney S Young, Ekaterina Mokhonova, Marbella Quinonez, April D Pyle, Melissa J Spencer
Duchenne muscular dystrophy is caused by mutations in DMD which disrupt the reading frame. Therapeutic strategies that restore DMD's reading frame, such as exon skipping and CRISPR/Cas9, need to be tested in the context of the human DMD sequence in vivo. We have developed a novel dystrophic mouse model by using CRISPR/Cas9 to delete exon 45 in the human DMD gene in hDMD mice, which places DMD out-of-frame. We have utilized this model to demonstrate that our clinically-relevant CRISPR/Cas9 platform, which targets deletion of human DMD exons 45-55, can be directly applied in vivo to restore dystrophin...
May 6, 2017: Journal of Neuromuscular Diseases
https://www.readbyqxmd.com/read/28484312/genetic-diagnosis-as-a-tool-for-personalized-treatment-of-duchenne-muscular-dystrophy
#2
REVIEW
Luca Bello, Elena Pegoraro
Accurate definition of genetic mutations causing Duchenne muscular dystrophy (DMD) has always been relevant in order to provide genetic counseling to patients and families, and helps to establish the prognosis in the case where the distinction between Duchenne, Becker, or intermediate muscular dystrophy is not obvious. As molecular treatments aimed at dystrophin restoration in DMD are increasingly available as commercialized drugs or within clinical trials, genetic diagnosis has become an indispensable tool in order to determine eligibility for these treatments...
December 2016: Acta Myologica: Myopathies and Cardiomyopathies: Official Journal of the Mediterranean Society of Myology
https://www.readbyqxmd.com/read/28390761/the-aav-mediated-and-rna-guided-crispr-cas9-system-for-gene-therapy-of-dmd-and-bmd
#3
REVIEW
Jing-Zhang Wang, Peng Wu, Zhi-Min Shi, Yan-Li Xu, Zhi-Jun Liu
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)...
April 5, 2017: Brain & Development
https://www.readbyqxmd.com/read/28325301/increased-expression-of-laminin-subunit-alpha-1-chain-by-dcas9-vp160
#4
Arnaud Perrin, Joël Rousseau, Jacques P Tremblay
Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adult human muscle, but laminin subunit alpha 1 (LAMA1) gene is expressed only during embryogenesis...
March 17, 2017: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/28244995/highly-efficient-rna-guided-base-editing-in-mouse-embryos
#5
Kyoungmi Kim, Seuk-Min Ryu, Sang-Tae Kim, Gayoung Baek, Daesik Kim, Kayeong Lim, Eugene Chung, Sunghyun Kim, Jin-Soo Kim
Base editors (BEs) composed of a cytidine deaminase fused to CRISPR-Cas9 convert cytidine to uridine, leading to single-base-pair substitutions in eukaryotic cells. We delivered BE mRNA or ribonucleoproteins targeting the Dmd or Tyr gene via electroporation or microinjection into mouse zygotes. F0 mice showed nonsense mutations with an efficiency of 44-57% and allelic frequencies of up to 100%, demonstrating an efficient method to generate mice with targeted point mutations.
May 2017: Nature Biotechnology
https://www.readbyqxmd.com/read/28195574/muscle-specific-crispr-cas9-dystrophin-gene-editing-ameliorates-pathophysiology-in-a-mouse-model-for-duchenne-muscular-dystrophy
#6
Niclas E Bengtsson, John K Hall, Guy L Odom, Michael P Phelps, Colin R Andrus, R David Hawkins, Stephen D Hauschka, Joel R Chamberlain, Jeffrey S Chamberlain
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx(4cv) mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation...
February 14, 2017: Nature Communications
https://www.readbyqxmd.com/read/27845387/adenoviral-vectors-encoding-crispr-cas9-multiplexes-rescue-dystrophin-synthesis-in-unselected-populations-of-dmd-muscle-cells
#7
Ignazio Maggio, Jin Liu, Josephine M Janssen, Xiaoyu Chen, Manuel A F V Gonçalves
Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of delivery systems capable of introducing the various gene editing tools into target cells. Here, we investigated the suitability of adenoviral vectors (AdVs) for multiplexed DMD editing by packaging in single vector particles expression units encoding the Streptococcus pyogenes Cas9 nuclease and sequence-specific gRNA pairs...
November 15, 2016: Scientific Reports
https://www.readbyqxmd.com/read/27735844/porcine-zygote-injection-with-cas9-sgrna-results-in-dmd-modified-pig-with-muscle-dystrophy
#8
Hong-Hao Yu, Heng Zhao, Yu-Bo Qing, Wei-Rong Pan, Bao-Yu Jia, Hong-Ye Zhao, Xing-Xu Huang, Hong-Jiang Wei
Dystrophinopathy, including Duchenne muscle dystrophy (DMD) and Becker muscle dystrophy (BMD) is an incurable X-linked hereditary muscle dystrophy caused by a mutation in the DMD gene in coding dystrophin. Advances in further understanding DMD/BMD for therapy are expected. Studies on mdx mice and dogs with muscle dystrophy provide limited insight into DMD disease mechanisms and therapeutic testing because of the different pathological manifestations. Miniature pigs share similar physiology and anatomy with humans and are thus an excellent animal model of human disease...
October 9, 2016: International Journal of Molecular Sciences
https://www.readbyqxmd.com/read/27542949/gene-therapies-that-restore-dystrophin-expression-for-the-treatment-of-duchenne-muscular-dystrophy
#9
REVIEW
Jacqueline N Robinson-Hamm, Charles A Gersbach
Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength...
September 2016: Human Genetics
https://www.readbyqxmd.com/read/27215286/the-emerging-role-of-viral-vectors-as-vehicles-for-dmd-gene-editing
#10
REVIEW
Ignazio Maggio, Xiaoyu Chen, Manuel A F V Gonçalves
Duchenne muscular dystrophy (DMD) is a genetic disorder caused by mutations in the dystrophin-encoding DMD gene. The DMD gene, spanning over 2.4 megabases along the short arm of the X chromosome (Xp21.2), is the largest genetic locus known in the human genome. The size of DMD, combined with the complexity of the DMD phenotype and the extent of the affected tissues, begs for the development of novel, ideally complementary, therapeutic approaches. Genome editing based on the delivery of sequence-specific programmable nucleases into dystrophin-defective cells has recently enriched the portfolio of potential therapies under investigation...
May 23, 2016: Genome Medicine
https://www.readbyqxmd.com/read/27119241/the-crispr-way-to-think-about-duchenne-s
#11
Michele P Calos
No abstract text is available yet for this article.
April 28, 2016: New England Journal of Medicine
https://www.readbyqxmd.com/read/27058929/imprecision-medicine-a-one-size-fits-many-approach-for-muscle-dystrophy
#12
COMMENT
Astrid Breitbart, Charles E Murry
There is still no curative treatment for Duchenne muscular dystrophy (DMD). In this issue of Cell Stem Cell, Young et al. (2016) demonstrate a genome editing approach applicable to 60% of DMD patients with CRISPR/Cas9 using one pair of guide RNAs.
April 7, 2016: Cell Stem Cell
https://www.readbyqxmd.com/read/26926391/duchenne-muscular-dystrophy-crispr-cas9-treatment
#13
Jerry R Mendell, Louise R Rodino-Klapac
A novel approach to gene correction by genome editing shows great promise as a treatment for Duchenne muscular dystrophy (DMD). CRISPR/Cas9 delivered by adeno-associated virus to a mouse model for DMD demonstrated improvement in function and histology.
May 2016: Cell Research
https://www.readbyqxmd.com/read/26877224/a-single-crispr-cas9-deletion-strategy-that-targets-the-majority-of-dmd-patients-restores-dystrophin-function-in-hipsc-derived-muscle-cells
#14
Courtney S Young, Michael R Hicks, Natalia V Ermolova, Haruko Nakano, Majib Jan, Shahab Younesi, Saravanan Karumbayaram, Chino Kumagai-Cresse, Derek Wang, Jerome A Zack, Donald B Kohn, Atsushi Nakano, Stanley F Nelson, M Carrie Miceli, Melissa J Spencer, April D Pyle
Mutations in DMD disrupt the reading frame, prevent dystrophin translation, and cause Duchenne muscular dystrophy (DMD). Here we describe a CRISPR/Cas9 platform applicable to 60% of DMD patient mutations. We applied the platform to DMD-derived hiPSCs where successful deletion and non-homologous end joining of up to 725 kb reframed the DMD gene. This is the largest CRISPR/Cas9-mediated deletion shown to date in DMD. Use of hiPSCs allowed evaluation of dystrophin in disease-relevant cell types. Cardiomyocytes and skeletal muscle myotubes derived from reframed hiPSC clonal lines had restored dystrophin protein...
April 7, 2016: Cell Stem Cell
https://www.readbyqxmd.com/read/26856237/exon-snipping-in-duchenne-muscular-dystrophy
#15
COMMENT
Dwi U Kemaladewi, Ronald D Cohn
Duchenne muscular dystrophy (DMD) is a life-limiting neuromuscular disorder caused by mutations in the DMD gene encoding dystrophin. We discuss very recent studies that used CRISPR/Cas9 technology to 'snip out' mutated exons in DMD, restoring the reading frame of the gene. We also present cautionary aspects of translating this exciting technology into clinical practice.
March 2016: Trends in Molecular Medicine
https://www.readbyqxmd.com/read/26812655/efficient-restoration-of-the-dystrophin-gene-reading-frame-and-protein-structure-in-dmd-myoblasts-using-the-cindel-method
#16
Jean-Paul Iyombe-Engembe, Dominique L Ouellet, Xavier Barbeau, Joël Rousseau, Pierre Chapdelaine, Patrick Lagüe, Jacques P Tremblay
The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene...
2016: Molecular Therapy. Nucleic Acids
https://www.readbyqxmd.com/read/26762977/selection-free-gene-repair-after-adenoviral-vector-transduction-of-designer-nucleases-rescue-of-dystrophin-synthesis-in-dmd-muscle-cell-populations
#17
Ignazio Maggio, Luca Stefanucci, Josephine M Janssen, Jin Liu, Xiaoyu Chen, Vincent Mouly, Manuel A F V Gonçalves
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ)...
February 18, 2016: Nucleic Acids Research
https://www.readbyqxmd.com/read/26721686/in-vivo-gene-editing-in-dystrophic-mouse-muscle-and-muscle-stem-cells
#18
Mohammadsharif Tabebordbar, Kexian Zhu, Jason K W Cheng, Wei Leong Chew, Jeffrey J Widrick, Winston X Yan, Claire Maesner, Elizabeth Y Wu, Ru Xiao, F Ann Ran, Le Cong, Feng Zhang, Luk H Vandenberghe, George M Church, Amy J Wagers
Frame-disrupting mutations in the DMD gene, encoding dystrophin, compromise myofiber integrity and drive muscle deterioration in Duchenne muscular dystrophy (DMD). Removing one or more exons from the mutated transcript can produce an in-frame mRNA and a truncated, but still functional, protein. In this study, we developed and tested a direct gene-editing approach to induce exon deletion and recover dystrophin expression in the mdx mouse model of DMD. Delivery by adeno-associated virus (AAV) of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonucleases coupled with paired guide RNAs flanking the mutated Dmd exon23 resulted in excision of intervening DNA and restored the Dmd reading frame in myofibers, cardiomyocytes, and muscle stem cells after local or systemic delivery...
January 22, 2016: Science
https://www.readbyqxmd.com/read/26721684/in-vivo-genome-editing-improves-muscle-function-in-a-mouse-model-of-duchenne-muscular-dystrophy
#19
Christopher E Nelson, Chady H Hakim, David G Ousterout, Pratiksha I Thakore, Eirik A Moreb, Ruth M Castellanos Rivera, Sarina Madhavan, Xiufang Pan, F Ann Ran, Winston X Yan, Aravind Asokan, Feng Zhang, Dongsheng Duan, Charles A Gersbach
Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene...
January 22, 2016: Science
https://www.readbyqxmd.com/read/26721683/postnatal-genome-editing-partially-restores-dystrophin-expression-in-a-mouse-model-of-muscular-dystrophy
#20
Chengzu Long, Leonela Amoasii, Alex A Mireault, John R McAnally, Hui Li, Efrain Sanchez-Ortiz, Samadrita Bhattacharyya, John M Shelton, Rhonda Bassel-Duby, Eric N Olson
CRISPR/Cas9-mediated genome editing holds clinical potential for treating genetic diseases, such as Duchenne muscular dystrophy (DMD), which is caused by mutations in the dystrophin gene. To correct DMD by skipping mutant dystrophin exons in postnatal muscle tissue in vivo, we used adeno-associated virus-9 (AAV9) to deliver gene-editing components to postnatal mdx mice, a model of DMD. Different modes of AAV9 delivery were systematically tested, including intraperitoneal at postnatal day 1 (P1), intramuscular at P12, and retro-orbital at P18...
January 22, 2016: Science
keyword
keyword
92094
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"