keyword
MENU ▼
Read by QxMD icon Read
search

ion channelopathy

keyword
https://www.readbyqxmd.com/read/28527921/drug-induced-fatal-arrhythmias-acquired-long-qt-and-brugada-syndromes
#1
REVIEW
Isik Turker, Tomohiko Ai, Hideki Itoh, Minoru Horie
Since the early 1990s, the concept of primary "inherited" arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc...
May 17, 2017: Pharmacology & Therapeutics
https://www.readbyqxmd.com/read/28527083/shared-mechanisms-of-epilepsy-migraine-and-affective-disorders
#2
Davide Zarcone, Simona Corbetta
Since the nineteenth century several clinical features have been observed in common between migraine and epilepsy (such as episodic attacks, triggering factors, presence of aura, frequent familiarity), but only in recent years researchers have really engaged in finding a common pathogenic mechanism. From studies of disease incidence, we understand how either migraine among patients with epilepsy or epilepsy among migraine patients are more frequent than in the general population. This association may result from a direct causality, by the same environmental risk factors and/or by a common genetic susceptibility...
May 2017: Neurological Sciences
https://www.readbyqxmd.com/read/28496185/-gardos-channelopathy-a-variant-of-hereditary-stomatocytosis-with-complex-molecular-regulation
#3
Elisa Fermo, Anna Bogdanova, Polina Petkova-Kirova, Anna Zaninoni, Anna Paola Marcello, Asya Makhro, Pascal Hänggi, Laura Hertz, Jens Danielczok, Cristina Vercellati, Nadia Mirra, Alberto Zanella, Agostino Cortelezzi, Wilma Barcellini, Lars Kaestner, Paola Bianchi
The Gardos channel is a Ca(2+) sensitive, K(+) selective channel present in several tissues including RBCs, where it is involved in cell volume regulation. Recently, mutations at two different aminoacid residues in KCNN4 have been reported in patients with hereditary xerocytosis. We identified by whole exome sequencing a new family with two members affected by chronic hemolytic anemia carrying mutation R352H in the KCNN4 gene. No additional mutations in genes encoding for RBCs cytoskeletal, membrane or channel proteins were detected...
May 11, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28494446/mutation-load-of-multiple-ion-channel-gene-mutations-in-brugada-syndrome
#4
Francesca Gualandi, Fatima Zaraket, Michele Malagù, Giulia Parmeggiani, Cecilia Trabanelli, Sergio Fini, Xiao Dang, Xiaoming Wei, Mingyan Fang, Matteo Bertini, Roberto Ferrari, Alessandra Ferlini
Brugada syndrome is a primary arrhythmic syndrome that accounts for 20% of all sudden cardiac death cases in individuals with a structurally normal heart. Pathogenic variants associated with Brugada syndrome have been identified in over 19 genes, with SCN5A as a pivotal gene accounting for nearly 30% of cases. In contrast to other arrhythmogenic channelopathies (such as long QT syndrome), digenic inheritance has never been reported in Brugada syndrome. Exploring 66 cardiac genes using a new custom next-generation sequencing panel, we identified a double heterozygosity for pathogenic mutations in SCN5A and TRPM4 in a Brugada syndrome patient...
May 12, 2017: Cardiology
https://www.readbyqxmd.com/read/28476643/in-vivo-assessment-of-neurological-channelopathies-application-of-peripheral-nerve-excitability-studies
#5
REVIEW
Susan E Tomlinson, James Howells, David Burke
With the rapid evolution of understanding of neurological channelopathies comes a need for sensitive tools to evaluate patients in clinical practice. Neurological channelopathies with a single-gene basis can manifest as seizures, headache, ataxia, vertigo, confusion, weakness and neuropathic pain and it is likely that other genetic factors contribute to the phenotype of many of these disorders. Ion channel dysfunction can result in abnormal cell membrane excitability but utilisation of advanced neurophysiology techniques has lagged behind developments in clinical, genetic and imaging evaluation of channelopathies...
May 2, 2017: Neuropharmacology
https://www.readbyqxmd.com/read/28470179/autoimmune-channelopathies-as-a-novel-mechanism-in-cardiac-arrhythmias
#6
REVIEW
Pietro Enea Lazzerini, Pier Leopoldo Capecchi, Franco Laghi-Pasini, Mohamed Boutjdir
Cardiac arrhythmias confer a considerable burden of morbidity and mortality in industrialized countries. Although coronary artery disease and heart failure are the prevalent causes of cardiac arrest, in 5-15% of patients, structural abnormalities at autopsy are absent. In a proportion of these patients, mutations in genes encoding cardiac ion channels are documented (inherited channelopathies), but, to date, the molecular autopsy is negative in nearly 70% of patients. Emerging evidence indicates that autoimmunity is involved in the pathogenesis of cardiac arrhythmias...
May 4, 2017: Nature Reviews. Cardiology
https://www.readbyqxmd.com/read/28469493/beyond-the-electrocardiogram-mutations-in-cardiac-ion-channel-genes-underlie-nonarrhythmic-phenotypes
#7
REVIEW
Thomas M Roston, Taylor Cunningham, Anna Lehman, Zachary W Laksman, Andrew D Krahn, Shubhayan Sanatani
Cardiac ion channelopathies are an important cause of sudden death in the young and include long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, idiopathic ventricular fibrillation, and short QT syndrome. Genes that encode ion channels have been implicated in all of these conditions, leading to the widespread implementation of genetic testing for suspected channelopathies. Over the past half-century, researchers have also identified systemic pathologies that extend beyond the arrhythmic phenotype in patients with ion channel gene mutations, including deafness, epilepsy, cardiomyopathy, periodic paralysis, and congenital heart disease...
2017: Clinical Medicine Insights. Cardiology
https://www.readbyqxmd.com/read/28420732/modulation-of-tmem16a-channel-activity-by-the-von-willebrand-factor-type-a-vwa-domain-of-the-calcium-activated-chloride-channel-regulator-1-clca1
#8
Monica Sala-Rabanal, Zeynep Yurtsever, Kayla N Berry, Colin G Nichols, Tom J Brett
Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here, we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction...
April 18, 2017: Journal of Biological Chemistry
https://www.readbyqxmd.com/read/28410768/-small-fiber-neuropathy
#9
V Langlois, A-L Bedat Millet, M Lebesnerais, S Miranda, F Marguet, Y Benhamou, P Marcorelles, H Lévesque
Small fiber neuropathy (SFN) is still unknown. Characterised by neuropathic pain, it typically begins by burning feet, but could take many other expression. SFN affects the thinly myelinated Aδ and unmyelinated C-fibers, by an inherited or acquired mechanism, which could lead to paresthesia, thermoalgic disorder or autonomic dysfunction. Recent studies suggest the preponderant role of ion channels such as Nav1.7. Furthermore, erythromelalgia or burning mouth syndrome are now recognized as real SFN. Various aetiologies of SFN are described...
April 11, 2017: La Revue de Médecine Interne
https://www.readbyqxmd.com/read/28389699/ion-channelopathies-and-migraine-pathogenesis
#10
REVIEW
Cassie L Albury, Shani Stuart, Larisa M Haupt, Lyn R Griffiths
Migraine is a common neurological disorder that affects approximately 12-20% of the general adult population. Migraine pathogenesis is complex and not wholly understood. Molecular genetic investigations, imaging and biochemical studies, have unveiled a number of interconnected neurological pathways which seem to have a cause and effect component integral to its cause. Much weight of migraine attack initiation can be placed on the initial trigger and the pathways involved in its neuronal counter reaction. Ion channels play a large role in the generation, portrayal and mitigation of the brains response to external triggers...
April 7, 2017: Molecular Genetics and Genomics: MGG
https://www.readbyqxmd.com/read/28386229/clc-channels-and-transporters-structure-physiological-functions-and-implications-in-human-chloride-channelopathies
#11
REVIEW
Diogo R Poroca, Ryan M Pelis, Valérie M Chappe
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl(-) transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl(-) ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation...
2017: Frontiers in Pharmacology
https://www.readbyqxmd.com/read/28363160/ion-channelopathies-associated-genetic-variants-as-the-culprit-for-sudden-unexplained-death
#12
REVIEW
Shouyu Wang, Lijuan Li, Ruiyang Tao, Yuzhen Gao
Forensic identification of sudden unexplained death (SUD) has always been a ticklish issue because it used to be defined as sudden death without a conclusive diagnosis after autopsy. However, benefiting from the developments in genome research, a growing body of evidence points to the importance of ion channelopathies associated genetic variants in the pathogenesis of SUD. Genetic diagnosis of the deceased is also a new trend in epidemiological studies, for it enables the undertaking for preventive approach in individuals with high risks...
March 21, 2017: Forensic Science International
https://www.readbyqxmd.com/read/28325641/spectrum-of-nondystrophic-skeletal-muscle-channelopathies-in-children
#13
Fouad Al-Ghamdi, Basil T Darras, Partha S Ghosh
BACKGROUND: The nondystrophic skeletal muscle channelopathies are a group of disorders caused by mutations of various voltage-gated ion channel genes, including nondystrophic myotonia and periodic paralysis. METHODS: We identified patients with a diagnosis of muscle channelopathy from our neuromuscular database in a tertiary care pediatric center from 2005 to 2015. We then performed a retrospective review of their medical records for demographic characteristics, clinical features, investigations, treatment, and follow-up...
February 16, 2017: Pediatric Neurology
https://www.readbyqxmd.com/read/28316956/sudden-infant-death-syndrome-due-to-long-qt-syndrome-a-brief-review-of-the-genetic-substrate-and-prevalence
#14
REVIEW
Nikolaos S Ioakeimidis, Theodora Papamitsou, Soultana Meditskou, Zafiroula Iakovidou-Kritsi
The pathophysiological mechanisms which lead to sudden infant death syndrome (SIDS) are not completely understood. Cardiac channelopathies are a well-established causative factor with long QT syndrome (LQTS) being the most frequent one, accounting for approximately 12% of SIDS cases. The genetic substrate of the above arrhythmogenic syndrome has been thoroughly described but only specific gene mutations or polymorphisms have been identified as SIDS causative. The review will focus on the prevalence of LQTS-induced SIDS or near-SIDS cases and the mutations held responsible...
December 2017: Journal of Biological Research
https://www.readbyqxmd.com/read/28293191/an-exploration-of-charge-compensating-ion-channels-across-the-phagocytic-vacuole-of-neutrophils
#15
Juliet R Foote, Philippe Behe, Mathew Frampton, Adam P Levine, Anthony W Segal
Neutrophils phagocytosing bacteria and fungi exhibit a burst of non-mitochondrial respiration that is required to kill and digest the engulfed microbes. This respiration is accomplished by the movement of electrons across the wall of the phagocytic vacuole by the neutrophil NADPH oxidase, NOX2. In this study, we have attempted to identify the non-proton ion channels or transporters involved in charge compensation by examining the effect of inhibitors on vacuolar pH and cross-sectional area, and on oxygen consumption...
2017: Frontiers in Pharmacology
https://www.readbyqxmd.com/read/28193892/kv1-1-channelopathy-abolishes-presynaptic-spike-width-modulation-by-subthreshold-somatic-depolarization
#16
Umesh Vivekananda, Pavel Novak, Oscar D Bello, Yuri E Korchev, Shyam S Krishnakumar, Kirill E Volynski, Dimitri M Kullmann
Although action potentials propagate along axons in an all-or-none manner, subthreshold membrane potential fluctuations at the soma affect neurotransmitter release from synaptic boutons. An important mechanism underlying analog-digital modulation is depolarization-mediated inactivation of presynaptic Kv1-family potassium channels, leading to action potential broadening and increased calcium influx. Previous studies have relied heavily on recordings from blebs formed after axon transection, which may exaggerate the passive propagation of somatic depolarization...
February 28, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28185290/computational-analysis-of-the-human-sinus-node-action-potential-model-development-and-effects-of-mutations
#17
Alan Fabbri, Matteo Fantini, Ronald Wilders, Stefano Severi
KEY POINTS: We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi-DiFrancesco model of rabbit SAN cells. Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally. Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model...
April 1, 2017: Journal of Physiology
https://www.readbyqxmd.com/read/28146053/cardiac-channelopathies-and-sudden-death-recent-clinical-and-genetic-advances
#18
REVIEW
Anna Fernández-Falgueras, Georgia Sarquella-Brugada, Josep Brugada, Ramon Brugada, Oscar Campuzano
Sudden cardiac death poses a unique challenge to clinicians because it may be the only symptom of an inherited heart condition. Indeed, inherited heart diseases can cause sudden cardiac death in older and younger individuals. Two groups of familial diseases are responsible for sudden cardiac death: cardiomyopathies (mainly hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic cardiomyopathy) and channelopathies (mainly long QT syndrome, Brugada syndrome, short QT syndrome, and catecholaminergic polymorphic ventricular tachycardia)...
January 29, 2017: Biology
https://www.readbyqxmd.com/read/28099415/structure-of-a-eukaryotic-cyclic-nucleotide-gated-channel
#19
Minghui Li, Xiaoyuan Zhou, Shu Wang, Ioannis Michailidis, Ye Gong, Deyuan Su, Huan Li, Xueming Li, Jian Yang
Cyclic-nucleotide-gated channels are essential for vision and olfaction. They belong to the voltage-gated ion channel superfamily but their activities are controlled by intracellular cyclic nucleotides instead of transmembrane voltage. Here we report a 3.5-Å-resolution single-particle electron cryo-microscopy structure of a cyclic-nucleotide-gated channel from Caenorhabditis elegans in the cyclic guanosine monophosphate (cGMP)-bound open state. The channel has an unusual voltage-sensor-like domain, accounting for its deficient voltage dependence...
February 2, 2017: Nature
https://www.readbyqxmd.com/read/28090678/the-epileptic-and-nonepileptic-spectrum-of-paroxysmal-dyskinesias-channelopathies-synaptopathies-and-transportopathies
#20
REVIEW
Roberto Erro, Kailash P Bhatia, Alberto J Espay, Pasquale Striano
Historically, the syndrome of primary paroxysmal dyskinesias was considered a group of disorders as a result of ion channel dysfunction. This proposition was primarily based on the discovery of mutations in ion channels, which caused other episodic neurological disorders such as epilepsy and migraine and also supported by the frequent association between paroxysmal dyskinesias and epilepsy. However, the discovery of the genes responsible for the 3 classic forms of paroxysmal dyskinesias disproved this ion channel theory...
March 2017: Movement Disorders: Official Journal of the Movement Disorder Society
keyword
keyword
91978
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"