Read by QxMD icon Read

Alzheimers mast cell

Nasibeh Khayer, Sayed-Amir Marashi, Mehdi Mirzaie, Fatemeh Goshadrou
Alzheimer's disease (AD) is the most common cause for dementia in human. Currently, more than 46 million people in the world suffer from AD and it is estimated that by 2050 this number increases to more than 131 million. AD is considered as a complex disease. Therefore, understanding the mechanism of AD is a universal challenge. Nowadays, a huge number of disease-related high-throughput "omics" datasets are freely available. Such datasets contain valuable information about disease-related pathways and their corresponding gene interactions...
2017: PloS One
Hamid Mollazadeh, Arrigo F G Cicero, Christopher N Blesso, Matteo Pirro, Muhammed Majeed, Amirhossein Sahebkar
Cytokines are small secreted proteins released by different types of cells with specific effects on cellular signaling and communication via binding to their receptors on the cell surface. IL-10 is known to be a pleiotropic and potent anti-inflammatory and immunosuppressive cytokine that is produced by both innate and adaptive immunity cells including dendritic cells, macrophages, mast cells, natural killer cells, eosinophils, neutrophils, B cells, CD8(+) T cells, and TH1, TH2, and TH17 and regulatory T cells...
August 11, 2017: Critical Reviews in Food Science and Nutrition
Duraisamy Kempuraj, Ramasamy Thangavel, Govindhasamy P Selvakumar, Smita Zaheer, Mohammad E Ahmed, Sudhanshu P Raikwar, Haris Zahoor, Daniyal Saeed, Prashant A Natteru, Shankar Iyer, Asgar Zaheer
Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions...
2017: Frontiers in Cellular Neuroscience
Francesco Girolamo, Cristiana Coppola, Domenico Ribatti
When related to central nervous system (CNS) health and disease, brain mast cells (MCs) can be a source of either beneficial or deleterious signals acting on neural cells. We review the current state of knowledge about molecular interactions between MCs and glia in neurodegenerative diseases such as Multiple Sclerosis, Alzheimer's disease, Amyotrophic Lateral Sclerosis, Parkinson's disease, Epilepsy. We also discuss the influence on MC actions evoked by the host microbiota, which has a profound effect on the host immune system, inducing important consequences in neurodegenerative disorders...
July 1, 2017: Brain, Behavior, and Immunity
Brandon M Brown, Brandon Pressley, Heike Wulff
The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling. KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3...
June 30, 2017: Current Neuropharmacology
Erik Hendriksen, Doris van Bergeijk, Ronald S Oosting, Frank A Redegeld
It is well recognized that neuroinflammation is involved in the pathogenesis of various neurodegenerative diseases. Microglia and astrocytes are major pathogenic components within this process and known to respond to proinflammatory mediators released from immune cells such as mast cells. Mast cells reside in the brain and are an important source of inflammatory molecules. Mast cell interactions with glial cells and neurons result in the release of mediators such as cytokines, proteases and reactive oxygen species...
August 2017: Neuroscience and Biobehavioral Reviews
Rachel H Kennedy, Amen Wiqas, James P Curley
The dentate gyrus of the hippocampus is a site of adult neurogenesis, and is also known to contain one of the highest concentrations of labile brain zinc (Zn), thought to aid in learning and memory by supporting neurogenesis. At the same time, it is known that unbound Zn, when present at excessive levels, decreases the formation of new neurons. Since mast cells contain Zn transporters capable of moving this essential element across their plasma membrane, as well as Zn-rich granules that are dispelled upon secretion, we reasoned that mast cells contribute to Zn homeostasis in this area of the brain, as they are found in greatest numbers in and around the dentate gyrus...
April 23, 2017: Neuroscience Letters
Yasdani B Shaik-Dasthagirisaheb, Pio Conti
Immunity and inflammation are deeply involved in Alzheimer's disease. The most important properties of pathological Alzheimer's disease are the extracellular deposits of amyloid â-protein plaque aggregates along with other unknown mutated proteins, which are implicated in immunity and inflammation. Mast cells are found in the brain of all mammalian species and in the periphery, and their biological mediators, including cytokines/chemokines, arachidonic acid products and stored enzymes, play an import role in Alzheimer's disease...
July 2016: Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University
Lea Radick, Stanton R Mehr
Several new medications are being investigated in late-phase studies for the treatment of patients with relapsing or progressive multiple sclerosis (MS). These agents represent a variety of mechanisms of action and provide not only lower relapse rates but also improvement in disabilities. The majority of investigational trials involve selective sphingosine-1-phosphate receptor 1 immunomodulators, such as laquinimod, ozanimod, ponesimod, and siponimod, in an effort to build on the success of fingolimod. Ocrelizumab is a CD20-positive B-cell-targeting monoclonal antibody with a promising new mechanism of action...
November 2015: American Health & Drug Benefits
Theoharis C Theoharides, Julia M Stewart, Erifili Hatziagelaki, Gerasimos Kolaitis
Brain "fog" is a constellation of symptoms that include reduced cognition, inability to concentrate and multitask, as well as loss of short and long term memory. Brain "fog" characterizes patients with autism spectrum disorders (ASDs), celiac disease, chronic fatigue syndrome, fibromyalgia, mastocytosis, and postural tachycardia syndrome (POTS), as well as "minimal cognitive impairment," an early clinical presentation of Alzheimer's disease (AD), and other neuropsychiatric disorders. Brain "fog" may be due to inflammatory molecules, including adipocytokines and histamine released from mast cells (MCs) further stimulating microglia activation, and causing focal brain inflammation...
2015: Frontiers in Neuroscience
Paloma A Harcha, Aníbal Vargas, Chenju Yi, Annette A Koulakoff, Christian Giaume, Juan C Sáez
Mast cells (MCs) store an array of proinflammatory mediators in secretory granules that are rapidly released upon activation by diverse conditions including amyloid beta (Aβ) peptides. In the present work, we found a rapid degranulation of cultured MCs through a pannexin1 hemichannel (Panx1 HC)-dependent mechanism induced by Aβ25-35 peptide. Accordingly, Aβ25-35 peptide also increased membrane current and permeability, as well as intracellular Ca(2+) signal, mainly via Panx1 HCs because all of these responses were drastically inhibited by Panx1 HC blockers and absent in the MCs of Panx1(-/-) mice...
June 24, 2015: Journal of Neuroscience: the Official Journal of the Society for Neuroscience
Michael J Hurley, Pascal F Durrenberger, Steve M Gentleman, Andrew F Walls, David T Dexter
Neuroinflammation is thought to contribute to cell death in neurodegenerative disorders, but the factors involved in the inflammatory process are not completely understood. Proteinase-activated receptor-2 (PAR2) expression in brain is increased in Alzheimer's disease and multiple sclerosis, but the status of PAR2 in Parkinson's disease is unknown. This study examined expression of PAR2 and endogenous proteinase activators (trypsin-2, mast cell tryptase) and proteinase inhibitors (serpin-A5, serpin-A13) in areas vulnerable and resistant to neurodegeneration in Parkinson's disease at different Braak α-synuclein stages of the disease in post-mortem brain...
September 2015: Journal of Molecular Neuroscience: MN
Jaume Folch, Dmitry Petrov, Miren Ettcheto, Ignacio Pedrós, Sonia Abad, Carlos Beas-Zarate, Alberto Lazarowski, Miguel Marin, Jordi Olloquequi, Carme Auladell, Antoni Camins
Alzheimer's disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology...
June 2015: Expert Review of Neurotherapeutics
Cinzia Volonté, Chiara Parisi, Savina Apolloni
Results from amyotrophic lateral sclerosis (ALS) patients and pre-clinical studies strongly suggest that systemic and CNS-intrinsic immune activation plays a central role in ALS pathogenesis. Microglial cells are emerging in this context as master regulators with a bi-functional role in the progression of the pathological response. They foster a pro-inflammatory setting through the production of cytotoxic cytokines and chemokines (M1 phenotype), after an aborted effort to sustain an anti-inflammatory environment for motor neurons through the release of beneficial cytokines and growth factors (M2 phenotype)...
2015: CNS & Neurological Disorders Drug Targets
Ivette Bañuelos-Cabrera, María Guadalupe Valle-Dorado, Blanca Irene Aldana, Sandra Adela Orozco-Suárez, Luisa Rocha
Blood-brain barrier (BBB) disruption has been associated with several acute and chronic brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy. This represents a critical situation because damaged integrity of the BBB is related to the influx of immune mediators, plasma proteins and other outside elements from blood to the central nervous system (CNS) that may trigger a cascade of events that leads to neuroinflammation. In this review, evidence that mast cells and the release of factors such as histamine play an important role in the neuroinflammatory process associated with brain disorders such as Alzheimer's disease, Parkinson's disease and epilepsy is presented...
November 2014: Archives of Medical Research
Allen P Kaplan, Kusumam Joseph
Binding of negatively charged macromolecules to factor XII induces a conformational change such that it becomes a substrate for trace amounts of activated factor present in plasma (less than 0.01%). As activated factor XII (factor XIIa or factor XIIf) forms, it converts prekallikrein (PK) to kallikrein and kallikrein cleaves high molecular weight kininogen (HK) to release bradykinin. A far more rapid activation of the remaining unactivated factor XII occurs by enzymatic cleavage by kallikrein (kallikrein-feedback) and sequential cleavage yields two forms of activated factor XII; namely, factor XIIa followed by factor XII fragment (factor XIIf)...
2014: Advances in Immunology
Karin Borges
This commentary discusses the possible functions of a relatively newly described solute carrier protein, Slc10a4, in regards to a recent article by Zelano et al. (2013) published in the January issue of Experimental Neurology, 239, 73-81. Slc10a4 belongs to the sodium-bile acid cotransporter family (Slc10), but does not show plasma membrane transport activity of bile acids and related molecules. It is co-localized with synaptic vesicle transporters for acetylcholine and dopamine. In Slc10a4 lacking mice, Zelano et al...
October 2013: Experimental Neurology
Sandra Amor, M Nicola Woodroofe
Emerging evidence suggests important roles of the innate and adaptive immune responses in the central nervous system (CNS) in neurodegenerative diseases. In this special review issue, five leading researchers discuss the evidence for the beneficial as well as the detrimental impact of the immune system in the CNS in disorders including Alzheimer's disease, multiple sclerosis and CNS injury. Several common pathological mechanisms emerge indicating that these pathways could provide important targets for manipulating the immune reposes in neurodegenerative disorders...
March 2014: Immunology
D B Vendramini-Costa, J E Carvalho
Inflammation is part of the body's response to internal and external environmental stimuli that normally eliminate the aggressor agent and restore the tissue physiology. However, when it becomes chronic, it can cause several pathologies such as cardiovascular, diabetes, rheumatoid arthritis, Alzheimer's autoimmune diseases and cancer. Currently, epidemiological data indicate that over 25% of all cancers are related to chronic infections and other types of unresolved inflammation. Further evidence of this relationship is the fact that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) has been associated with reduced risk to developing many types of cancers...
2012: Current Pharmaceutical Design
Preet Anand, Baldev Singh, Amteshwar Singh Jaggi, Nirmal Singh
The mast cells are multi-effector cells with wide distribution in the different body parts and traditionally their role has been well-defined in the development of IgE-mediated hypersensitivity reactions including bronchial asthma. Due to the availability of genetically modified mast cell-deficient mice, the broadened pathophysiological role of mast cells in diverse diseases has been revealed. Mast cells exert different physiological and pathophysiological roles by secreting their granular contents, including vasoactive amines, cytokines and chemokines, and various proteases, including tryptase and chymase...
July 2012: Naunyn-Schmiedeberg's Archives of Pharmacology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"