Read by QxMD icon Read


Tingting Cheng, Donghua Wang, Yongfeng Wang, Shumeng Zhang, Chao Zhang, Shudong Liu, Yajun Xi, Fengli Sun
Switchgrass (Panicum virgatum L.) is a sustainable cellulosic energy crop with high biomass yield on marginal soils. Tillering, an important agronomic characteristic related to biomass production in gramineous plants, is regulated by complex interacting factors, such as plant hormones. Strigolactones (SLs) comprise a novel class of plant hormones that inhibit shoot branching. The MORE AXILLARY GROWTH2 (MAX2)/DWARF 3 (D3)/RAMOSUS (RMS4) genes encode proteins involved in the SL signaling pathway in various plants...
May 15, 2018: Plant Physiology and Biochemistry: PPB
Tara J Conkling, Jerrold L Belant, Travis L DeVault, James A Martin
Growing concerns about climate change, foreign oil dependency, and environmental quality have fostered interest in perennial native grasses (e.g., switchgrass [Panicum virgatum]) for bioenergy production while also maintaining biodiversity and ecosystem function. However, biomass cultivation in marginal landscapes such as airport grasslands may have detrimental effects on aviation safety as well as conservation efforts for grassland birds. In 2011-2013, we investigated effects of vegetation composition and harvest frequency on seasonal species richness and habitat use of grassland birds and modeled relative abundance, aviation risk, and conservation value of birds associated with biomass crops...
March 8, 2018: Ecological Applications: a Publication of the Ecological Society of America
Zhu Chen, Wesley D Reznicek, Caixia Wan
In this study, an acidified, aqueous DES comprising choline chloride: glycerol (ChCl:Gly) was used to fractionate switchgrass into three major streams under a relatively mild condition: cellulose-rich pulp, lignin, and xylose-rich liquor. The pulp showed good digestibility with about 89% glucose yield. The solvent can be recycled successfully and reused for at least four more pretreatment cycles while maintaining its pretreatment capability. The solvent recycling also improved the lignin recovery from the pretreatment liquor...
April 18, 2018: Bioresource Technology
Chao Zhang, Gaijuan Tang, Xi Peng, Fengli Sun, Shudong Liu, Yajun Xi
BACKGROUND: Long non-coding RNAs (lncRNAs) play important roles in plant growth and stress responses. Studies of lncRNAs in non-model plants are quite limited, especially those investigating multiple dehydration stresses. In this study, we identified novel lncRNAs and analyzed their functions in dehydration stress memory in switchgrass, an excellent biofuel feedstock and soil-conserving plant in the Gramineae family. RESULTS: We analyzed genome-wide transcriptional profiles of leaves of 5-week-old switchgrass plantlets grown via tissue culture after primary and secondary dehydration stresses (D1 and D2) and identified 16,551 novel lncRNAs, including 4554 annotated lncRNAs (targeting 3574 genes), and 11,997 unknown lncRNAs...
May 4, 2018: BMC Plant Biology
Wusheng Liu, Mitra Mazarei, Rongjian Ye, Yanhui Peng, Yuanhua Shao, Holly L Baxter, Robert W Sykes, Geoffrey B Turner, Mark F Davis, Zeng-Yu Wang, Richard A Dixon, C Neal Stewart
Background: Genetic engineering of switchgrass ( Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes...
2018: Biotechnology for Biofuels
Zetao Bai, Tianxiong Qi, Yuchen Liu, Zhenying Wu, Lichao Ma, Wenwen Liu, Yingping Cao, Yan Bao, Chunxiang Fu
Methionine (Met) synthesized from aspartate is a fundamental amino acid needed to produce S-adenosylmethionine (SAM) that is an important cofactor for the methylation of monolignols. As a competitive inhibitor of SAM-dependent methylation, the effect of S-adenosylhomocysteine (SAH) on lignin biosynthesis, however, is still largely unknown in plants. Expression levels of Cystathionine γ-synthase (PvCGS) and S-adenosylhomocysteine hydrolase1 (PvSAHH1) were downregulated by RNAi technology, respectively, in switchgrass, a dual-purpose forage and biofuel crop...
April 28, 2018: Plant Biotechnology Journal
Chao Zhang, Xi Peng, Xiaofeng Guo, Gaijuan Tang, Fengli Sun, Shudong Liu, Yajun Xi
Background: Switchgrass ( Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. Results: Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes...
2018: Biotechnology for Biofuels
Suresh Poudel, Richard J Giannone, Mirko Basen, Intawat Nookaew, Farris L Poole, Robert M Kelly, Michael W W Adams, Robert L Hettich
Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates...
2018: Biotechnology for Biofuels
Xueming Yang, Hainan Zhao, Tao Zhang, Zixian Zeng, Pingdong Zhang, Bo Zhu, Yonghua Han, Guilherme T Braz, Michael D Casler, Jeremy Schmutz, Jiming Jiang
Centromeres in most higher eukaryotes are composed of long arrays of satellite repeats from a single satellite repeat family. Why centromeres are dominated by a single satellite repeat and how the satellite repeats originate and evolve are among the most intriguing and long-standing questions in centromere biology. We identified eight satellite repeats in the centromeres of tetraploid switchgrass (Panicum virgatum). Seven repeats showed characteristics associated with classical centromeric repeats with monomeric lengths ranging from 166 to 187 bp...
March 25, 2018: New Phytologist
Mahesh Rangu, Zhujia Ye, Sarabjit Bhatti, Suping Zhou, Yong Yang, Tara Fish, Theodore W Thannhauser
In this paper, we report on aluminum (Al)-induced root proteomic changes in switchgrass. After growth in a hydroponic culture system supplemented with 400 μM of Al, plants began to show signs of physiological stress such as a reduction in photosynthetic rate. At this time, the basal 2-cm long root tips were harvested and divided into two segments, each of 1-cm in length, for protein extraction. Al-induced changes in proteomes were identified using tandem mass tags mass spectrometry (TMT-MS)-based quantitative proteomics analysis...
March 22, 2018: Proteomes
Hong Sun, Yixiao Xie, Yulong Zheng, Yanli Lin, Fuyu Yang
A greenhouse experiment was carried out to investigate the effects of arbuscular mycorrhizal fungi (AMF) on the growth, P and Cd concentrations and bioenergy quality-related factors of five cultivars of switchgrass, including three lowland cultivars (Alamo (Ala), Kanlow (Kan), Performer (Per)) and two highland cultivars (Blackwell (Bw), Summer (Sum)), with 0, 1 and 10 mg/kg Cd addition levels. The results showed that AMF inoculation notably increased the biomass and P concentrations of all the cultivars. The Cd concentrations in the roots were higher than those in the shoots of all cultivars irrespective of inoculation, but the AMF had different effects on Cd accumulation in highland and lowland cultivars...
2018: PeerJ
Ilya N Boykov, Elijah Shuford, Baohong Zhang
Nanoparticle TiO2 is a common chemical used in daily life. As increasing usage of TiO2 , it is becoming a potentially dangerous contaminant to the environment. However, the impact of TiO2 is not well understood. In this paper, switchgrass was employed to investigate the impacts of nanoparticle TiO2 on plant growth and development as well as the potential impact on the expression of microRNAs (miRNAs). TiO2 significantly affected switchgrass seed generation as well as plant growth and development in a dose-dependent manner...
March 7, 2018: Genomics
Julian F Cacho, Mohamed A Youssef, George M Chescheir, R Wayne Skaggs, Timothy W Appelboom, Zakiya H Leggett, Eric B Sucre, Jami E Nettles, Consuelo Arellano
Managed forests in southern U.S. are a potential source of lignocellulosic biomass for biofuel production. Changes in management practices to optimize biomass production may impact the quality of waters draining to nutrient-sensitive waters in coastal plain regions. We investigated shallow groundwater quality effects of intercropping switchgrass (Panicum virgatum L.) with managed loblolly pine (Pinus taeda L.) to produce bioenergy feedstock and quality sawtimber in a poorly drained soil of eastern North Carolina, U...
August 1, 2018: Science of the Total Environment
Guigui Wan, Taylor Frazier, Julianne Jorgensen, Bingyu Zhao, Charles E Frazier
Background: Mechanical properties of transgenic switchgrass have practical implications for biorefinery technologies. Presented are fundamentals for simple (thermo)mechanical measurements of genetically transformed switchgrass. Experimental basics are provided for the novice, where the intention is to promote collaboration between plant biologists and materials scientists. Results: Stem sections were subjected to two stress modes: (1) torsional oscillation in the linear response region, and (2) unidirectional torsion to failure...
2018: Biotechnology for Biofuels
Joseph Evans, Millicent D Sanciangco, Kin H Lau, Emily Crisovan, Kerrie Barry, Chris Daum, Hope Hundley, Jerry Jenkins, Megan Kennedy, Govindarajan Kunde-Ramamoorthy, Brieanne Vaillancourt, Ananta Acharya, Jeremy Schmutz, Malay Saha, Shawn M Kaeppler, E Charles Brummer, Michael D Casler, C Robin Buell
Switchgrass ( is a perennial native North American grass present in two ecotypes: upland, found primarily in the northern range of switchgrass habitats, and lowland, found largely in the southern reaches of switchgrass habitats. Previous studies focused on a diversity panel of primarily northern switchgrass, so to expand our knowledge of genetic diversity in a broader set of North American switchgrass, exome capture sequence data were generated for 632 additional, primarily lowland individuals. In total, over 37 million single nucleotide polymorphisms (SNPs) were identified and a set of 1...
March 2018: Plant Genome
Laura L Lee, Sara E Blumer-Schuette, Javier A Izquierdo, Jeffrey V Zurawski, Andrew J Loder, Jonathan M Conway, James G Elkins, Mircea Podar, Alicia Clum, Piet C Jones, Marek J Piatek, Deborah A Weighill, Daniel A Jacobson, Michael W W Adams, Robert M Kelly
Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization...
May 1, 2018: Applied and Environmental Microbiology
Jia Xu, Joseph W Kloepper, Ping Huang, John A McInroy, Chia H Hu
The aims of this study were to isolate and characterize N2 -fixing bacteria from giant reed and switchgrass and evaluate their plant growth promotion and nutrient uptake potential for use as biofertilizers. A total of 190 bacteria were obtained from rhizosphere soil and inside stems and roots of giant reed and switchgrass. All the isolates were confirmed to have nitrogenase activity, 96.9% produced auxin, and 85% produced siderophores. Then the top six strains, including Sphingomonas trueperi NNA-14, Sphingomonas trueperi NNA-19, Sphingomonas trueperi NNA-17, Sphingomonas trueperi NNA-20, Psychrobacillus psychrodurans NP-3, and Enterobacter oryzae NXU-38, based on nitrogenase activity, were inoculated on maize and wheat seeds in greenhouse tests to assess their potential benefits to plants...
May 2018: Journal of Basic Microbiology
Richard R Rodrigues, Nyle C Rodgers, Xiaowei Wu, Mark A Williams
Microbial diversity on earth is extraordinary, and soils alone harbor thousands of species per gram of soil. Understanding how this diversity is sorted and selected into habitat niches is a major focus of ecology and biotechnology, but remains only vaguely understood. A systems-biology approach was used to mine information from databases to show how it can be used to answer questions related to the core microbiome of habitat-microbe relationships. By making use of the burgeoning growth of information from databases, our tool "COREMIC" meets a great need in the search for understanding niche partitioning and habitat-function relationships...
2018: PeerJ
Mojdeh Faraji, Luis L Fonseca, Luis Escamilla-Treviño, Jaime Barros-Rios, Nancy Engle, Zamin K Yang, Timothy J Tschaplinski, Richard A Dixon, Eberhard O Voit
Background: Lignin is a natural polymer that is interwoven with cellulose and hemicellulose within plant cell walls. Due to this molecular arrangement, lignin is a major contributor to the recalcitrance of plant materials with respect to the extraction of sugars and their fermentation into ethanol, butanol, and other potential bioenergy crops. The lignin biosynthetic pathway is similar, but not identical in different plant species. It is in each case comprised of a moderate number of enzymatic steps, but its responses to manipulations, such as gene knock-downs, are complicated by the fact that several of the key enzymes are involved in several reaction steps...
2018: Biotechnology for Biofuels
Elizabeth R Milano, Courtney E Payne, Ed Wolfrum, John Lovell, Jerry Jenkins, Jeremy Schmutz, Thomas E Juenger
Background: Biofuels derived from lignocellulosic plant material are an important component of current renewable energy strategies. Improvement efforts in biofuel feedstock crops have been primarily focused on increasing biomass yield with less consideration for tissue quality or composition. Four primary components found in the plant cell wall contribute to the overall quality of plant tissue and conversion characteristics, cellulose and hemicellulose polysaccharides are the primary targets for fuel conversion, while lignin and ash provide structure and defense...
2018: Biotechnology for Biofuels
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"