Read by QxMD icon Read

RNA decay exosome

Stefan Bresson, Alex Tuck, Desislava Staneva, David Tollervey
In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination...
March 2, 2017: Molecular Cell
Jerome M Molleston, Sara Cherry
The innate immune system has evolved a number of sensors that recognize viral RNA (vRNA) to restrict infection, yet the full spectrum of host-encoded RNA binding proteins that target these foreign RNAs is still unknown. The RNA decay machinery, which uses exonucleases to degrade aberrant RNAs largely from the 5' or 3' end, is increasingly recognized as playing an important role in antiviral defense. The 5' degradation pathway can directly target viral messenger RNA (mRNA) for degradation, as well as indirectly attenuate replication by limiting specific pools of endogenous RNAs...
January 4, 2017: Viruses
Christian Schmidt, Eva Kowalinski, Vivekanandan Shanmuganathan, Quentin Defenouillère, Katharina Braunger, André Heuer, Markus Pech, Abdelkader Namane, Otto Berninghausen, Micheline Fromont-Racine, Alain Jacquier, Elena Conti, Thomas Becker, Roland Beckmann
Ski2-Ski3-Ski8 (Ski) is a helicase complex functioning with the RNA-degrading exosome to mediate the 3'-5' messenger RNA (mRNA) decay in turnover and quality-control pathways. We report that the Ski complex directly associates with 80S ribosomes presenting a short mRNA 3' overhang. We determined the structure of an endogenous ribosome-Ski complex using cryo-electron microscopy (EM) with a local resolution of the Ski complex ranging from 4 angstroms (Å) in the core to about 10 Å for intrinsically flexible regions...
December 16, 2016: Science
Nicola Meola, Michal Domanski, Evdoxia Karadoulama, Yun Chen, Coline Gentil, Dennis Pultz, Kristoffer Vitting-Seerup, Søren Lykke-Andersen, Jens S Andersen, Albin Sandelin, Torben Heick Jensen
The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its co-factor Mtr4p/hMTR4, which links to RNA-binding protein adaptors. One example is the trimeric human nuclear exosome targeting (NEXT) complex, which is composed of hMTR4, the Zn-finger protein ZCCHC8, and the RNA-binding factor RBM7. NEXT primarily targets early and unprocessed transcripts, which demands a rationale for how the nuclear exosome recognizes processed RNAs. Here, we describe the poly(A) tail exosome targeting (PAXT) connection, which comprises the ZFC3H1 Zn-knuckle protein as a central link between hMTR4 and the nuclear poly(A)-binding protein PABPN1...
November 3, 2016: Molecular Cell
Xiang Yu, Matthew R Willmann, Stephen J Anderson, Brian D Gregory
RNA turnover is necessary for controlling proper mRNA levels posttranscriptionally. In general, RNA degradation is via exoribonucleases that degrade RNA either from the 5' end to the 3' end, such as XRN4, or in the opposite direction by the multisubunit exosome complex. Here, we use genome-wide mapping of uncapped and cleaved transcripts to reveal the global landscape of cotranslational mRNA decay in the Arabidopsis thaliana transcriptome. We found that this process leaves a clear three nucleotide periodicity in open reading frames...
October 2016: Plant Cell
Atsuko Miki, Josephine Galipon, Satoshi Sawai, Toshifumi Inada, Kunihiro Ohta
Antisense RNA has emerged as a crucial regulator of opposite-strand protein-coding genes in the long noncoding RNA (lncRNA) category, but little is known about their dynamics and decay process in the context of a stress response. Antisense transcripts from the fission yeast fbp1 locus (fbp1-as) are expressed in glucose-rich conditions and anticorrelated with transcription of metabolic stress-induced lncRNA (mlonRNA) and mRNA on the sense strand during glucose starvation. Here, we investigate the localization and decay of antisense RNAs at fbp1 and other loci, and propose a model to explain the rapid switch between antisense and sense mlonRNA/mRNA transcription triggered by glucose starvation...
December 2016: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Gabriela Conti, Diego Zavallo, Andrea L Venturuzzi, Maria C Rodriguez, Martin Crespi, Sebastian Asurmendi
RNA decay pathways comprise a combination of RNA degradation mechanisms that are implicated in gene expression, development and defense responses in eukaryotes. These mechanisms are known as the RNA Quality Control or RQC pathways. In plants, another important RNA degradation mechanism is the post-transcriptional gene silencing (PTGS) mediated by small RNAs (siRNAs). Notably, the RQC pathway antagonizes PTGS by preventing the entry of dysfunctional mRNAs into the silencing pathway to avoid global degradation of mRNA by siRNAs...
January 2017: Plant Journal: for Cell and Molecular Biology
Jason W Hoskins, Abdisamad Ibrahim, Mickey A Emmanuel, Sarah M Manmiller, Yinglun Wu, Maura O'Neill, Jinping Jia, Irene Collins, Mingfeng Zhang, Janelle V Thomas, Lauren M Rost, Sudipto Das, Hemang Parikh, Jefferson M Haake, Gail L Matters, Robert C Kurtz, William R Bamlet, Alison Klein, Rachael Stolzenberg-Solomon, Brian M Wolpin, Ronit Yarden, Zhaoming Wang, Jill Smith, Sara H Olson, Thorkell Andresson, Gloria M Petersen, Laufey T Amundadottir
Genome-wide association studies (GWAS) have identified multiple common susceptibility loci for pancreatic cancer. Here we report fine-mapping and functional analysis of one such locus residing in a 610 kb gene desert on chr13q22.1 (marked by rs9543325). The closest candidate genes, KLF5, KLF12, PIBF1, DIS3 and BORA, range in distance from 265-586 kb. Sequencing three sub-regions containing the top ranked SNPs by imputation P-value revealed a 30 bp insertion/deletion (indel) variant that was significantly associated with pancreatic cancer risk (rs386772267, P = 2...
August 30, 2016: Human Molecular Genetics
Eytan Zlotorynski
No abstract text is available yet for this article.
August 22, 2016: Nature Reviews. Molecular Cell Biology
Anna Łabno, Zbigniew Warkocki, Tomasz Kuliński, Paweł Szczepan Krawczyk, Krystian Bijata, Rafał Tomecki, Andrzej Dziembowski
The exosome-independent exoribonuclease DIS3L2 is mutated in Perlman syndrome. Here, we used extensive global transcriptomic and targeted biochemical analyses to identify novel DIS3L2 substrates in human cells. We show that DIS3L2 regulates pol II transcripts, comprising selected canonical and histone-coding mRNAs, and a novel FTL_short RNA from the ferritin mRNA 5' UTR. Importantly, DIS3L2 contributes to surveillance of maturing snRNAs during their cytoplasmic processing. Among pol III transcripts, DIS3L2 particularly targets vault and Y RNAs and an Alu-like element BC200 RNA, but not Alu repeats, which are removed by exosome-associated DIS3...
December 1, 2016: Nucleic Acids Research
Eva Kowalinski, Alexander Kögel, Judith Ebert, Peter Reichelt, Elisabeth Stegmann, Bianca Habermann, Elena Conti
The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 Å resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome...
July 7, 2016: Molecular Cell
Hussein H Aly, Junya Suzuki, Koichi Watashi, Kazuaki Chayama, Shin-Ichi Hoshino, Makoto Hijikata, Takanobu Kato, Takaji Wakita
Hepatitis B virus (HBV) is a stealth virus, minimally inducing the interferon system required for efficient induction of both innate and adaptive immune responses. However, 90% of acutely infected adults can clear the virus, suggesting the presence of other, interferon-independent pathways leading to viral clearance. Given the known ability of helicases to bind viral nucleic acids, we performed a functional screening assay to identify helicases that regulate HBV replication. We identified the superkiller viralicidic activity 2-like (SKIV2L) RNA helicase (a homolog of the Saccharomyces cerevisiae Ski2 protein) on the basis of its direct and preferential interaction with HBV X-mRNA...
July 29, 2016: Journal of Biological Chemistry
Lifang Zhao, Ljerka Kunst
ECERIFERUM7 (CER7)/AtRRP45B core subunit of the exosome, the main cellular 3'-to-5' exoribonuclease, is a positive regulator of cuticular wax biosynthesis in Arabidopsis (Arabidopsis thaliana) inflorescence stems. CER7-dependent exosome activity determines stem wax load by controlling transcript levels of the wax-related gene CER3 Characterization of the second-site suppressors of the cer7 mutant revealed that small interfering RNAs (siRNAs) are direct effectors of CER3 expression. To explore the relationship between the exosome and posttranscriptional gene silencing (PTGS) in regulating CER3 transcript levels, we investigated two additional suppressor mutants, wax restorer1 (war1) and war7...
June 2016: Plant Physiology
Jun-Jie Liu, Chu-Ya Niu, Yao Wu, Dan Tan, Yang Wang, Ming-Da Ye, Yang Liu, Wenwei Zhao, Ke Zhou, Quan-Sheng Liu, Junbiao Dai, Xuerui Yang, Meng-Qiu Dong, Niu Huang, Hong-Wei Wang
The eukaryotic multi-subunit RNA exosome complex plays crucial roles in 3'-to-5' RNA processing and decay. Rrp6 and Ski7 are the major cofactors for the nuclear and cytoplasmic exosomes, respectively. In the cytoplasm, Ski7 helps the exosome to target mRNAs for degradation and turnover via a through-core pathway. However, the interaction between Ski7 and the exosome complex has remained unclear. The transaction of RNA substrates within the exosome is also elusive. In this work, we used single-particle cryo-electron microscopy to solve the structures of the Ski7-exosome complex in RNA-free and RNA-bound forms at resolutions of 4...
July 2016: Cell Research
Nicholas Sofos, Mikael B L Winkler, Ditlev E Brodersen
RNA decay is an important process that is essential for controlling the abundance, quality and maturation of transcripts. In eukaryotes, RNA decay in the 3'-5' direction is carried out by the exosome, an RNA-degradation machine that is conserved from yeast to humans. A range of cofactors stimulate the enzymatic activity of the exosome and serve as adapters for the many RNA substrates. In human cells, the exosome associates with the heterotrimeric nuclear exosome targeting (NEXT) complex consisting of the DExH-box helicase hMTR4, the zinc-finger protein hZCCHC8 and the RRM-type protein hRBM7...
May 2016: Acta Crystallographica. Section F, Structural Biology Communications
Tomoyasu Sugiyama, Gobi Thillainadesan, Venkata R Chalamcharla, Zhaojing Meng, Vanivilasini Balachandran, Jothy Dhakshnamoorthy, Ming Zhou, Shiv I S Grewal
Erh1, the fission yeast homolog of Enhancer of rudimentary, is implicated in meiotic mRNA elimination during vegetative growth, but its function is poorly understood. We show that Erh1 and the RNA-binding protein Mmi1 form a stoichiometric complex, called the Erh1-Mmi1 complex (EMC), to promote meiotic mRNA decay and facultative heterochromatin assembly. To perform these functions, EMC associates with two distinct complexes, Mtl1-Red1 core (MTREC) and CCR4-NOT. Whereas MTREC facilitates assembly of heterochromatin islands coating meiotic genes silenced by the nuclear exosome, CCR4-NOT promotes RNAi-dependent heterochromatin domain (HOOD) formation at EMC-target loci...
March 3, 2016: Molecular Cell
Mridula Muppavarapu, Susanne Huch, Tracy Nissan
Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates...
2016: RNA Biology
Benjamin M Akiyama, Daniel Eiler, Jeffrey S Kieft
Cells contain powerful RNA decay machinery to eliminate unneeded RNA from the cell, and this process is an important and regulated part of controlling gene expression. However, certain structured RNAs have been found that can robustly resist degradation and extend the lifetime of an RNA. In this review, we present three RNA structures that use a specific three-dimensional fold to provide protection from RNA degradation, and discuss how the recently-solved structures of these RNAs explain their function. Specifically, we describe the Xrn1-resistant RNAs from arthropod-borne flaviviruses, exosome-resistant long non-coding RNAs associated with lung cancer metastasis and found in Kaposi's sarcoma-associated herpesvirus, and tRNA-like sequences occurring in certain plant viruses...
February 2016: Current Opinion in Structural Biology
Christiane Harnisch, Simona Cuzic-Feltens, Juliane C Dohm, Michael Götze, Heinz Himmelbauer, Elmar Wahle
Post-transcriptional 3' end addition of nucleotides is important in a variety of RNA decay pathways. We have examined the 3' end addition of nucleotides during the decay of the Hsp70 mRNA and a corresponding reporter RNA in Drosophila S2 cells by conventional sequencing of cDNAs obtained after mRNA circularization and by deep sequencing of dedicated libraries enriched for 3' decay intermediates along the length of the mRNA. Approximately 5%-10% of 3' decay intermediates carried nonencoded oligo(A) tails with a mean length of 2-3 nucleotides...
March 2016: RNA
Cornelia Kilchert, Sina Wittmann, Monica Passoni, Sneha Shah, Sander Granneman, Lidia Vasiljeva
In eukaryotic cells, inefficient splicing is surprisingly common and leads to the degradation of transcripts with retained introns. How pre-mRNAs are committed to nuclear decay is unknown. Here, we uncover a mechanism by which specific intron-containing transcripts are targeted for nuclear degradation in fission yeast. Sequence elements within these "decay-promoting" introns co-transcriptionally recruit the exosome specificity factor Mmi1, which induces degradation of the unspliced precursor and leads to a reduction in the levels of the spliced mRNA...
December 22, 2015: Cell Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"