Read by QxMD icon Read


Tam Dang, Roderich D Süssmuth
The need for new drugs for the treatment of various diseases is enormous. From the previous century until the present, numerous peptide and peptide-derived natural products have been isolated from bacteria and fungi. Hence, microorganisms play a pivotal role as sources for novel drugs with an emphasis on anti-infective agents. Various disciplines from biology, chemistry, and medicine are involved in early stages of the search for peptide natural products including taxonomy, microbiology, bioanalytics, bioinformatics, and medicinal chemistry...
June 26, 2017: Accounts of Chemical Research
Andres Cubillos-Ruiz, Jessie W Berta-Thompson, Jamie W Becker, Wilfred A van der Donk, Sallie W Chisholm
Lanthipeptides are ribosomally derived peptide secondary metabolites that undergo extensive posttranslational modification. Prochlorosins are a group of lanthipeptides produced by certain strains of the ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus Unlike other lanthipeptide-producing bacteria, picocyanobacteria use an unprecedented mechanism of substrate promiscuity for the production of numerous and diverse lanthipeptides using a single lanthionine synthetase. Through a cross-scale analysis of prochlorosin biosynthesis genes-from genomes to oceanic populations-we show that marine picocyanobacteria have the collective capacity to encode thousands of different cyclic peptides, few of which would display similar ring topologies...
June 19, 2017: Proceedings of the National Academy of Sciences of the United States of America
Priyesh Agrawal, Shradha Khater, Money Gupta, Neetu Sain, Debasisa Mohanty
Ribosomally synthesized and post-translationally modified peptides (RiPPs) constitute a rapidly growing class of natural products with diverse structures and bioactivities. We have developed RiPPMiner, a novel bioinformatics resource for deciphering chemical structures of RiPPs by genome mining. RiPPMiner derives its predictive power from machine learning based classifiers, trained using a well curated database of more than 500 experimentally characterized RiPPs. RiPPMiner uses Support Vector Machine to distinguish RiPP precursors from other small proteins and classify the precursors into 12 sub-classes of RiPPs...
May 12, 2017: Nucleic Acids Research
Elvis Legala Ongey, Hüseyin Yassi, Stephan Pflugmacher, Peter Neubauer
No abstract text is available yet for this article.
February 2, 2017: Biotechnology Letters
Lindsay M Repka, Jonathan R Chekan, Satish K Nair, Wilfred A van der Donk
Lanthipeptides are ribosomally synthesized and post-translationally modified peptides (RiPPs) that display a wide variety of biological activities, from antimicrobial to antiallodynic. Lanthipeptides that display antimicrobial activity are called lantibiotics. The post-translational modification reactions of lanthipeptides include dehydration of Ser and Thr residues to dehydroalanine and dehydrobutyrine, a transformation that is carried out in three unique ways in different classes of lanthipeptides. In a cyclization process, Cys residues then attack the dehydrated residues to generate the lanthionine and methyllanthionine thioether cross-linked amino acids from which lanthipeptides derive their name...
April 26, 2017: Chemical Reviews
Chang He, Min Zeng, Debapriya Dutta, Tong Hee Koh, Jie Chen, Wilfred A van der Donk
LanC-like (LanCL) proteins are mammalian homologs of bacterial LanC enzymes, which catalyze the addition of the thiol of Cys to dehydrated Ser residues during the biosynthesis of lanthipeptides, a class of natural products formed by post-translational modification of precursor peptides. The functions of LanCL proteins are currently unclear. A recent proposal suggested that LanCL1 catalyzes the addition of the Cys of glutathione to protein- or peptide-bound dehydroalanine (Dha) to form lanthionine, analogous to the reaction catalyzed by LanC in bacteria...
January 20, 2017: Scientific Reports
Elvis Legala Ongey, Hüseyin Yassi, Stephan Pflugmacher, Peter Neubauer
The intrinsic qualities of lanthipeptides for their use as therapeutic drugs present several challenges because of their properties, which include stability, solubility and bioavailability, which, under physiological conditions, are very low. Researches have encouraged clinical evaluation of a few compounds, such as mutacin 1140, microbisporicin, actagardine and duramycin, with pharmacokinetic profiles showing rapid distribution and elimination rates, good bioavailability and fecal excretion, as well as high protein binding...
April 2017: Biotechnology Letters
Subha Mukherjee, Liujie Huo, Gabrielle N Thibodeaux, Wilfred A van der Donk
Cytolysin, a two-component lanthipeptide comprising cytolysin S (CylLS″) and cytolysin L (CylLL″), is the only family member to exhibit lytic activity against mammalian cells in addition to synergistic antimicrobial activity. A subset of the thioether cross-links of CylLS″ and CylLL″ have ll stereochemistry instead of the canonical dl stereochemistry in all previously characterized lanthipeptides. The synthesis of a CylLS″ variant with dl stereochemistry is reported. Its antimicrobial activity was found to be decreased, but not its lytic activity against red blood cells...
December 2, 2016: Organic Letters
Jian Wang, Xiaoxuan Ge, Li Zhang, Kunling Teng, Jin Zhong
Lanthipeptides are a large class of bacteria-produced, ribosomally-synthesized and post-translationally modified peptides. They are recognized as peptide antibiotics because most of them exhibit potent antimicrobial activities against Gram-positive bacteria especially those that are phylogenetically related to producers. Maturation of class II lanthipeptide like bovicin HJ50 undergoes precursor modification by LanM and a subsequent leader peptide cleavage by LanT. Herein, via co-expression of precursor gene bovA, modification gene bovM and transporter gene bovT in Escherichia coli C43 (DE3), bioactive bovicin HJ50 was successfully produced and secreted...
December 7, 2016: Scientific Reports
Sebastian W Fuchs, Gerald Lackner, Brandon I Morinaka, Yohei Morishita, Teigo Asai, Sereina Riniker, Jörn Piel
Ribosomally synthesized and posttranslationally modified peptide natural products (RiPPs) exhibit diverse structures and bioactivities and are classified into distinct biosynthetic families. A recently reported family is the proteusins, with the prototype members polytheonamides being generated by almost 50 maturation steps, including introduction of d-residues at multiple positions by an unusual radical SAM epimerase. A region in the protein-like N-terminal leader of proteusin precursors is identified that is crucial for epimerization...
September 26, 2016: Angewandte Chemie
Tianlu Mo, Lingui Xue, Qi Zhang
Lanthipeptides are a growing class of ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. These compounds are widely distributed among taxonomically distant species, and their structures and biological activities are diverse, providing an important source for drug research and developement. In this review, we summarized the recent advances in the understanding of structure, classification, evolution and substrate-controlled biosynthetic mechanism of lanthipeptide, attempting to highlight the intriguing chemistry and enzymology in the biosynthesis of this growing family of natural products...
March 4, 2016: Wei Sheng Wu Xue Bao, Acta Microbiologica Sinica
Weixin Tang, Gabrielle N Thibodeaux, Wilfred A van der Donk
Stereochemical control is critical in natural product biosynthesis. For ribosomally synthesized and post-translationally modified peptides (RiPPs), the mechanism(s) by which stereoselectivity is achieved is still poorly understood. In this work, we focused on the stereoselective lanthionine synthesis in lanthipeptides, a major class of RiPPs formed by the addition of Cys residues to dehydroalanine (Dha) or dehydrobutyrine (Dhb). Nonenzymatic cyclization of the small subunit of a virulence lanthipeptide, the enterococcal cytolysin, resulted in the native modified peptide as the major product, suggesting that both regioselectivity and stereoselectivity are inherent to the dehydrated peptide sequence...
September 16, 2016: ACS Chemical Biology
Elvis Legala Ongey, Peter Neubauer
Lanthipeptides (also called lantibiotics for those with antibacterial activities) are ribosomally synthesized post-translationally modified peptides having thioether cross-linked amino acids, lanthionines, as a structural element. Lanthipeptides have conceivable potentials to be used as therapeutics, however, the lack of stable, high-yield, well-characterized processes for their sustainable production limit their availability for clinical studies and further pharmaceutical commercialization. Though many reviews have discussed the various techniques that are currently employed to produce lanthipeptides, a direct comparison between these methods to assess industrial applicability has not yet been described...
June 7, 2016: Microbial Cell Factories
Hongwei Liu, Shuli Yin, Likang An, Genwei Zhang, Huicai Cheng, Yanhua Xi, Guanhui Cui, Feiyan Zhang, Liping Zhang
Bacillus subtilis BSD-2, isolated from cotton (Gossypium spp.), had strong antagonistic activity to Verticillium dahlia Kleb and Botrytis cinerea. We sequenced and annotated the BSD-2 complete genome to help us the better use of this strain, which has surfactin, bacilysin, bacillibactin, subtilosin A, Tas A and a potential class IV lanthipeptide biosynthetic pathways.
July 20, 2016: Journal of Biotechnology
Neha Garg, Yuki Goto, Ting Chen, Wilfred A van der Donk
The biosynthesis of the class II lanthipeptide geobacillin II was reconstituted in vitro. The purified precursor peptide was modified by the lanthipeptide synthetase GeoM at temperatures ranging between 37 and 80°C demonstrating the thermostability of the enzyme. Geobacillin II shares with cytolysin, haloduracin, and carnolysin a DhxDhxXxxXxxCys motif (Dhx = dehydroalanine or dehydrobutyrine) as precursor to its N-terminal A-ring. Like in these other three lantibiotics, the lanthionine in the A-ring of geobacillin II had the LL stereochemical configuration as shown by chiral gas chromatography/mass spectrometry...
November 2016: Biopolymers
Dikla Aharonovich, Daniel Sher
Interactions between marine microorganisms may determine the dynamics of microbial communities. Here, we show that two strains of the globally abundant marine cyanobacterium Prochlorococcus, MED4 and MIT9313, which belong to two different ecotypes, differ markedly in their response to co-culture with a marine heterotrophic bacterium, Alteromonas macleodii strain HOT1A3. HOT1A3 enhanced the growth of MIT9313 at low cell densities, yet inhibited it at a higher concentration, whereas it had no effect on MED4 growth...
December 2016: ISME Journal
Christopher J Thibodeaux, Joshua Wagoner, Yi Yu, Wilfred A van der Donk
The mechanisms by which lanthipeptide synthetases control the order in which they catalyze multiple chemical processes are poorly understood. The lacticin 481 synthetase (LctM) cleaves eight chemical bonds and forms six new chemical bonds in a controlled and ordered process. Two general mechanisms have been suggested for the temporal and spatial control of these transformations. In the spatial positioning model, leader peptide binding promotes certain reactions by establishing the spatial orientation of the substrate peptide relative to the synthetase active sites...
May 25, 2016: Journal of the American Chemical Society
Xiling Zhao, Wilfred A van der Donk
The discovery of new ribosomally synthesized and post-translationally modified peptide natural products (RiPPs) has greatly benefitted from the influx of genomic information. The lanthipeptides are a subset of this class of compounds. Adopting the genome-mining approach revealed a novel lanthipeptide gene cluster encoded in the genome of Ruminococcus flavefaciens FD-1, an anaerobic bacterium that is an important member of the rumen microbiota of livestock. The post-translationally modified peptides were produced via heterologous expression in Escherichia coli...
February 18, 2016: Cell Chemical Biology
Stefano Donadio
New tools and molecules are spurring a renewed interest in natural products. In this issue of Cell Chemical Biology, Zhao and van der Donk (2016) report a single lantibiotic cluster encoding different α- and β-peptides, each with its dedicated processing enzyme. A number of clever experiments led to in vitro production of these molecules.
February 18, 2016: Cell Chemical Biology
Zheng Zhang, Li Zhang, Jie Zhang, Hongchu Ma, Shutao Sun, Jin Zhong
OBJECTIVE: To obtain the cryptic lanthipeptide from Streptomyces clavuligerus by semi-in vitro biosynthesis that is a novel method for mining lanthipeptides resource from Streptomyces. METHODS: The core peptide of cryptic lanthipeptide was modified in E. coli by nisin modification system, and purified by affinity chromatography and High Performance Liquid Chromatography (HPLC). After the leader peptide was removed, the core peptide was obtained and its dehydration and cyclic structure were analyzed by MALDI-TOF MS and tandem MS...
November 4, 2015: Wei Sheng Wu Xue Bao, Acta Microbiologica Sinica
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"