Read by QxMD icon Read

Histidine kinase

Leonardo T Rosa, Vicki Springthorpe, Matheus E Bianconi, Gavin H Thomas, David J Kelly
Lineage-specific expansion (LSE) of protein families is a widespread phenomenon in many eukaryotic genomes, but is generally more limited in bacterial genomes. Here, we report the presence of 434 genes encoding solute-binding proteins (SBPs) from the tripartite tricarboxylate transporter (TTT) family, within the 8.2 Mb genome of the α-proteobacterium Rhodoplanes sp. Z2-YC6860, a gene family over-representation of unprecedented abundance in prokaryotes. Representing over 6 % of the total number of coding sequences, the SBP genes are distributed across the whole genome but are found rarely in low-GC islands, where the gene density for this family is much lower...
April 18, 2018: Microbial Genomics
Lisa Gottschlich, Miriam Bortfeld-Miller, Christoph Gäbelein, Sebastian Dintner, Julia A Vorholt
Two-component systems constitute phosphotransfer signaling pathways and enable adaptation to environmental changes, an essential feature for bacterial survival. The general stress response (GSR) in the plant-protecting alphaproteobacterium Sphingomonas melonis Fr1 involves a two-component system consisting of multiple stress-sensing histidine kinases (Paks) and the response regulator PhyR; PhyR in turn regulates the alternative sigma factor EcfG, which controls expression of the GSR regulon. While Paks had been shown to phosphorylate PhyR in vitro, it remained unclear if and under which conditions direct phosphorylation happens in the cell, as Paks also phosphorylate the single domain response regulator SdrG, an essential yet enigmatic component of the GSR signaling pathway...
April 2018: PLoS Genetics
Brian P Landry, Rohan Palanki, Nikola Dyulgyarov, Lucas A Hartsough, Jeffrey J Tabor
Two-component systems (TCSs) are the largest family of multi-step signal transduction pathways in biology, and a major source of sensors for biotechnology. However, the input concentrations to which biosensors respond are often mismatched with application requirements. Here, we utilize a mathematical model to show that TCS detection thresholds increase with the phosphatase activity of the sensor histidine kinase. We experimentally validate this result in engineered Bacillus subtilis nitrate and E. coli aspartate TCS sensors by tuning their detection threshold up to two orders of magnitude...
April 12, 2018: Nature Communications
Guorong Lu, Mary R Tandang-Silvas, Alyssa C Dawson, Trenton J Dawson, Jay C Groppe
Heterotopic ossification (HO), the pathological extraskeletal formation of bone, can arise from blast injuries, severe burns, orthopedic procedures and gain-of-function mutations in a component of the bone morphogenetic protein (BMP) signaling pathway, the ACVR1/ALK2 receptor serine-threonine (protein) kinase, causative of Fibrodysplasia Ossificans Progressiva (FOP). All three ALKs (-2, -3, -6) that play roles in bone morphogenesis contribute to trauma-induced HO, hence are well-validated pharmacological targets...
April 4, 2018: Bone
A B Westbye, L Kater, C Wiesmann, H Ding, C K Yip, J T Beatty
Several members of the Rhodobacterales ( Alphaproteobacteria ) produce a conserved horizontal gene transfer vector, called gene transfer agent (GTA), that appears to have evolved from a bacteriophage. The model system to study GTA biology is the R. capsulatus GTA (RcGTA), a small, tailed bacteriophage-like particle produced by a subset of the cells in a culture. The response regulator CtrA is conserved in the Alphaproteobacteria and is an essential regulator of RcGTA production: it controls production and maturation of the RcGTA particle and RcGTA release from cells...
April 6, 2018: Applied and Environmental Microbiology
Dominique Türkowsky, Jens Esken, Tobias Goris, Torsten Schubert, Gabriele Diekert, Nico Jehmlich, Martin von Bergen
Organohalide respiration (OHR), comprising the reductive dehalogenation of halogenated organic compounds, is subject to a unique memory effect and long-term transcriptional downregulation of the involved genes in Sulfurospirillum multivorans. Gene expression ceases slowly over approximately 100 generations in the absence of tetrachloroethene (PCE). However, the molecular mechanisms of this regulation process are not understood. We show here that Sulfurospirillum halorespirans undergoes the same type of regulation when cultivated without chlorinated ethenes for a long period of time...
April 1, 2018: Journal of Proteomics
Aleksandra Bury, Klaas J Hellingwerf
Helical alignment of the α-helical linker of the LOV (light-oxygen-voltage) domain of YtvA from Bacillus subtilis with the α-helical linker of the histidine-protein kinase domain of the Sln1 kinase of the phospho-relay system for osmoregulation of Saccharomyces cerevisiae has been used to construct a light-modulatable histidine protein kinase. In vitro, illumination with blue light inhibits both the ATP-dependent phosphorylation of this hybrid kinase, as well as the phosphoryl transfer to Ypd1, the phosphoryl transfer domain of the Sln1 system...
April 2, 2018: AMB Express
Koki Nishino, Sawako Takahashi, Hiromi Nishida
We compared the gene expression levels of the blue-light-responsive genes, appA (encoding photosynthesis promoting protein AppA), ppsR (encoding photosynthesis suppressing protein PpsR), and EL368 (encoding a blue-light-activated histidine kinase with a light, oxygen, or voltage domain) between aerobic and anaerobic conditions in spheroplasts of the aerobic photosynthetic bacterium Erythrobacter litoralis. The spheroplasts conducted photosynthesis under red light but not under blue light. All three blue-light-responsive genes showed higher expression under aerobic conditions than under anaerobic conditions under blue light...
March 31, 2018: Journal of General and Applied Microbiology
Li Yuan, Zhenning Liu, Xiaoya Song, Judy Jernstedt, Venkatesan Sundaresan
A defining feature of angiosperms is double fertilization involving the female gametophyte central cell and formation of a nutrient-storing tissue called endosperm. The route for the evolutionary origin of endosperm from a gymnosperm ancestor, particularly the molecular steps involved, has remained elusive. Recently, the histidine kinase gene Cytokinin-Independent 1 (CKI1), an activator of cytokinin signaling, was described as a key to specification of the endosperm precursor central cell in Arabidopsis. Here, we have investigated the function and expression of a putative ortholog of CKI1 in the gymnosperm Ginkgo biloba...
March 30, 2018: New Phytologist
Haritha Adhikarla, Elsio A Wunder, Ariel E Mechaly, Sameet Mehta, Zheng Wang, Luciane Santos, Vimla Bisht, Peter Diggle, Gerald Murray, Ben Adler, Francesc Lopez, Jeffrey P Townsend, Eduardo Groisman, Mathieu Picardeau, Alejandro Buschiazzo, Albert I Ko
Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira . In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator ) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively...
2018: Frontiers in Cellular and Infection Microbiology
Jennifer L Dale, Malik J Raynor, Maureen C Ty, Maria Hadjifrangiskou, Theresa M Koehler
Bacillus anthracis is an endemic soil bacterium that exhibits two different lifestyles. In the soil environment, B. anthracis undergoes a cycle of saprophytic growth, sporulation, and germination. In mammalian hosts, the pathogenic lifestyle of B. anthracis is spore germination followed by vegetative cell replication, but cells do not sporulate. During infection, and in specific culture conditions, transcription of the structural genes for the anthrax toxin proteins and the biosynthetic operon for capsule synthesis is positively controlled by the regulatory protein AtxA...
2018: Frontiers in Microbiology
Pavel V Fedurayev, Kirill S Mironov, David A Gabrielyan, Vladimir S Bedbenov, Anna A Zorina, Maria Shumskaya, Dmitry A Los
Double mutant ΔkatG/tpx of cyanobacterium Synechocystis sp. strain PCC 6803, defective in anti-oxidative enzymes catalase peroxidase (KatG) and thioredoxin peroxidase (Tpx), is unable to grow in the presence of exogenous H2O2. The ΔkatG/tpx mutant is shown to be extremely sensitive to very low concentrations of H2O2, especially when intensified with cold stress. Analysis of gene expression in both wild type and ΔkatG/tpx mutant cells treated by combined cold/oxidative stress revealed that H2O2 participates in regulation of expression of cold-responsive genes, affecting either signal perception or transduction...
March 24, 2018: Plant & Cell Physiology
Rizwan Yousaf, Chunfang Gu, Zubair M Ahmed, Shaheen N Khan, Thomas B Friedman, Sheikh Riazuddin, Stephen B Shears, Saima Riazuddin
Autosomal recessive nonsyndromic hearing loss is a genetically heterogeneous disorder. Here, we report a severe-to-profound sensorineural hearing loss locus, DFNB100 on chromosome 5q13.2-q23.2. Exome enrichment followed by massive parallel sequencing revealed a c.2510G>A transition variant in PPIP5K2 that segregated with DFNB100-associated hearing loss in two large apparently unrelated Pakistani families. PPIP5Ks enzymes interconvert 5-IP7 and IP8, two key members of the inositol pyrophosphate (PP-IP) cell-signaling family...
March 28, 2018: PLoS Genetics
Caralyn E Flack, John S Parkinson
Environmental awareness is an essential attribute for all organisms. The chemotaxis system of Escherichia coli provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense chemical gradients with transmembrane proteins [methyl-accepting chemotaxis proteins (MCPs)] that have an extracellular ligand-binding domain and intracellular histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases (HAMP) and signaling domains that govern locomotor behavior...
March 26, 2018: Proceedings of the National Academy of Sciences of the United States of America
Sravanth K Hindupur, Marco Colombi, Stephen R Fuhs, Matthias S Matter, Yakir Guri, Kevin Adam, Marion Cornu, Salvatore Piscuoglio, Charlotte K Y Ng, Charles Betz, Dritan Liko, Luca Quagliata, Suzette Moes, Paul Jenoe, Luigi M Terracciano, Markus H Heim, Tony Hunter, Michael N Hall
Histidine phosphorylation, the so-called hidden phosphoproteome, is a poorly characterized post-translational modification of proteins. Here we describe a role of histidine phosphorylation in tumorigenesis. Proteomic analysis of 12 tumours from an mTOR-driven hepatocellular carcinoma mouse model revealed that NME1 and NME2, the only known mammalian histidine kinases, were upregulated. Conversely, expression of the putative histidine phosphatase LHPP was downregulated specifically in the tumours. We demonstrate that LHPP is indeed a protein histidine phosphatase...
March 21, 2018: Nature
Attila Kiss, Huaqing Shu, Ouafa Hamza, David Santer, Eva Verena Tretter, Shanglong Yao, Klaus Markstaller, Seth Hallström, Bruno K Podesser, Klaus Ulrich Klein
OBJECTIVES: Previous studies demonstrated that preconditioning with argon gas provided a marked reduction in inflammation and apoptosis and increased myocardial contractility in the setting of acute myocardial ischaemia-reperfusion (IR). There is substantial evidence that myocardial IR injury following cardioplegic arrest is associated with the enhancement of apoptosis and inflammation, which is considered to play a role in cardiac functional impairment. Therefore, the present study was designed to clarify whether preconditioning with argon gas enhances recovery of cardiac function following cardioplegic arrest...
March 13, 2018: European Journal of Cardio-thoracic Surgery
Guillaume Dubeaux, Julie Neveu, Enric Zelazny, Grégory Vert
Plant roots forage the soil for iron, the concentration of which can be dramatically lower than those needed for growth. Soil iron uptake uses the broad metal spectrum IRT1 transporter that also transports zinc, manganese, cobalt, and cadmium. Sophisticated iron-dependent transcriptional regulatory mechanisms allow plants to tightly control the abundance of IRT1, ensuring optimal absorption of iron. Here, we uncover that IRT1 acts as a transporter and receptor (transceptor), directly sensing excess of its non-iron metal substrates in the cytoplasm, to regulate its own degradation...
March 15, 2018: Molecular Cell
Olivier Poupel, Caroline Proux, Bernd Jagla, Tarek Msadek, Sarah Dubrac
The success of Staphylococcus aureus, as both a human and animal pathogen, stems from its ability to rapidly adapt to a wide spectrum of environmental conditions. Two-component systems (TCSs) play a crucial role in this process. Here, we describe a novel staphylococcal virulence factor, SpdC, an Abi-domain protein, involved in signal sensing and/or transduction. We have uncovered a functional link between the WalKR essential TCS and the SpdC Abi membrane protein. Expression of spdC is positively regulated by the WalKR system and, in turn, SpdC negatively controls WalKR regulon genes, effectively constituting a negative feedback loop...
March 2018: PLoS Pathogens
Imran Khan, Patricia S Steeg
The NM23/NME gene was identified as a metastasis suppressor. It's re-expression inhibited cancer cell motility and suppressed metastasis, without effecting primary tumor size in multiple model systems. The mechanisms of NME suppression of motility and metastasis are incompletely known. Of particular interest, has been NME histidine 118 phosphorylation, involved in nucleoside diphosphate kinase (NDPK) and histidine protein kinase (HPK) activities. Using recently developed monoclonal antibodies to phosphohistidine, we have addressed the correlation of NME phosphohistidine with motility suppression, and distinguished the NDPK and HPK contributions...
February 13, 2018: Oncotarget
Reiko Murakami, Hitomi Hokonohara, Dock-Chil Che, Tomoji Kawai, Takuya Matsumoto, Masahiro Ishiura
The cyanobacterial clock oscillator is composed of three clock proteins: KaiA, KaiB and KaiC. SasA, a KaiC-binding EnvZ-like orthodox histidine kinase involved in the main clock output pathway, exists mainly as a trimer (SasA3mer ) and occasionally as a hexamer (SasA6mer ) in vitro. Previously, the molecular mass of the SasA-KaiCDD complex, where KaiCDD is a mutant KaiC with two Asp substitutions at the two phosphorylation sites, has been estimated by gel-filtration chromatography to be larger than 670 kDa...
March 12, 2018: Genes to Cells: Devoted to Molecular & Cellular Mechanisms
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"