Read by QxMD icon Read

alginate hydrogel

Y J Son, H S Kim, W Mao, J B Park, D Lee, H Lee, H S Yoo
A two-step strategy for coaxial electrospinning and postelectrospinning is an effective method for fabricating superfine nanofibers composed of highly swellable hydrogels. Alginate and poly(ε-caprolactone) [PCL] were coelectrospun via fibrous meshes with a coaxial nozzle; alginate at the core was subsequently cross-linked in calcium chloride solution. The PCL sheath was removed from the meshes by repeated organic-phase washing. The peeling process was monitored by scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry, and the complete removal of the PCL outer layers was confirmed by the thinning of the fiber volume...
March 16, 2018: Nanoscale
Anne Bernhardt, Birgit Paul, Michael Gelinsky
BACKGROUND: Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). METHODS: Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking...
March 13, 2018: Marine Drugs
Yongzhou Wang, Ying Miao, Jieling Zhang, Jian Ping Wu, Thomas Brett Kirk, Jiake Xu, Dong Ma, Wei Xue
Hydrogels with shape memory behavior and internal structure have wide applications in fields ranging from tissue engineering and medical instruments to drug delivery; however, creating the hydrogels has proven to be extremely challenging. This study presents a three-dimensional (3D) printing technology to fabricate the shape memory hydrogels with internal structure (SMHs) by combining sodium alginate (alginate) and pluronic F127 diacrylate macromer (F127DA). SMHs were constituted by a dual network structure...
March 1, 2018: Materials Science & Engineering. C, Materials for Biological Applications
Huijun Li, Yu Jun Tan, Sijun Liu, Lin Li
A novel strategy to improve the adhesion between printed layers of 3D printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels (alginate, xanthan, kappa-carrageenan (Kca)) and three cationic hydrogels (chitosan, gelatin, gelatin methacrylate (GelMA)) are chosen in order to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and combination of hydrogels...
March 8, 2018: ACS Applied Materials & Interfaces
Madathipat Unnikrishnan, P R Umashankar, Sidharth Viswanathan, Ajay Savlania, Roy Joseph, C V Muraleedharan, Vivek Agrawal, Sachin J Shenoy, Lissy K Krishnan, P V Mohanan, A Sabareeswaran
Background & objectives: Polyethylene terephthalate (PET) graft, designed and developed at our institute for vascular reconstruction, is porous to promote optimal incorporation and neointima formation, requiring pre-clotting or biomodification by sealing the pores before implantation. The objective of this study was to characterize, test and perform preclinical evaluation of hydrogel (alginate dialdehyde cross-linked gelatin) sealed fluoropassivated PET vascular prosthesis in pig model, so as to avoid pre-clotting, for its safety and efficacy before employing the indigenous and less expensive graft for clinical use...
November 2017: Indian Journal of Medical Research
Solmaz Karamikamkar, Ehsan Behzadfar, Karen C Cheung
Producing three-dimensional (3-D) multicellular tumor spheroids (TSs) is valuable for characterizing anticancer drugs since they provide a more representative model of the 3-D in vivo tumor than conventional two-dimensional (2-D) monolayer culture. The interaction of tumor cells with the extracellular matrix (ECM) in a 3-D culture environment is more similar to a tumor in vivo than in a 2-D environment; cell-cell and cell-ECM interaction can influence cell behaviour, such as in response to drug treatment. In vitro tumor spheroid models have been developed using microfluidic systems to generate 3-D hydrogel beads containing components of alginate and ECM protein, such as collagen, with high uniformity and throughput...
March 6, 2018: Biomedical Microdevices
Pingping Zhao, Fei Yu, Ruoyu Wang, Yao Ma, Yanqing Wu
The wide occurrence of antibiotics in groundwater has raised serious concerns due to their impacts on humans and the ecosystem. Most of the research in groundwater remediation focuses on the exploitation of nano-materials. However, nano-materials have several disadvantages such as high production cost, rapid reduction in permeability, disposal problems, and high sensitivity to environmental conditions. To solve these issues, novel sodium alginate/graphene oxide hydrogel beads (GSA) were synthesised and their effectiveness as permeable reactive barrier (PRB) backfill material in the remediation of ciprofloxacin (CPX)-contaminated groundwater was tested...
February 27, 2018: Chemosphere
Yun Zheng, Zhanfang Ma
In this work, a new strategy of dual-reaction triggered sensitivity amplification for ultrasensitive electrochemical detection of matrix metalloproteinase-7 (MMP-7) was developed. The sensitivity of amperometric biosensor relies on the current signal differences (ΔI) caused by per unit concentration target. Benefited from dual-reaction catalytic activities of Pd nanoparticles, dual catalytic reactions were implemented in the biosensor to amplify the ΔI: (1) Fenton-like reaction was triggered by the probes to degrade redox species methylene blue; (2) catalytic precipitation reaction was followed subsequently to generate insoluble precipitation by 4-chloro-1-naphthol oxidation...
February 21, 2018: Biosensors & Bioelectronics
Lei Wang, Wanfu Zhou, Qingguo Wang, Chao Xu, Quan Tang, Haiyang Yang
Oxidized sodium alginate is a handily modifiable polysaccharide owing to the pendant aldehyde groups which can form dynamic covalent bonds with amines, acylhydrazines, etc., providing oxidized sodium alginate-based hydrogels with stimuli-responsive properties. However, due to the stiffness and, in particular, the hydrophobicity of sodium alginate dialdehyde at low pH, the mechanical performance and pH stimuli responsiveness of oxidized sodium alginate-based hydrogels are still strictly limited. Herein, we report a new strategy to build an injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly(ethyleneglycol) (PEG)...
March 1, 2018: Molecules: a Journal of Synthetic Chemistry and Natural Product Chemistry
Qiang Li, Haishuang Lin, Jack Rauch, Loic P Deleyrolle, Brent A Reynolds, Hendrik J Viljoen, Chi Zhang, Chi Zhang, Linxia Gu, Erika Van Wyk, Yuguo Lei
Glioblastoma is the most aggressive and deadly brain cancer. There is growing interest to develop drugs that specifically target to glioblastoma tumor-initiating cells (TICs). However, the cost-effective production of large numbers of high quality glioblastoma TICs for drug discovery with current cell culturing technologies remains very challenging. Here, we report a new method that cultures glioblastoma TICs in microscale alginate hydrogel tubes (or AlgTubes). The AlgTubes allowed long-term culturing (~50 days, 10 passages) of glioblastoma TICs with high growth rate (~700-fold expansion/14 days), high cell viability and high volumetric yield (~3...
February 23, 2018: Scientific Reports
Yang Liu, Yu Zhang, Shao-Nong Chen, J Brent Friesen, Dejan Nikolić, Mary P Choules, James B McAlpine, David C Lankin, Richard A Gemeinhart, Guido F Pauli
Natural Deep Eutectic Solvent (NADES) species can exhibit unexpected solubilizing power for lipophilic molecules despite their simple composition, hydrophilic organic molecules and water. In the present study, the unique properties of NADES species were applied in combination with a model polymer system: a hydrophilic chitosan/alginate hydrogel. Briefly, NADES species (e.g., mannose-dimethylurea-water, 2:5:5, mole/mole) formed matrices to 1) dissolve lipophilic molecules (e.g., curcumin), 2) load lipophilic molecule(s) into the hydrogel, and 3) spontaneously vacate from the system...
February 20, 2018: Fitoterapia
Jiqing Yang, Xiaotong Hu, Jia Xu, Xin Liu, Li Yang
A novel capillary electrophoresis-integrated immobilized enzyme reactor (CE-integrated IMER) is developed using single-step in-situ acetylcholinesterase (AChE)-mediated alginate hydrogelation and enzyme encapsulation. Alginate hydrogelation with "egg-box" structure is triggered inside a capillary with releasing of Ca2+ by changing the pH of the sol solution, which is accomplished in-situ by AChE-catalyzed hydrolysis reaction of acetylthiocholine to produce acetic acid. AChE and any other enzyme initially contained in the sol solution [e...
February 22, 2018: Analytical Chemistry
Rasheed Ahmad, Yan Deng, Ravina Singh, Mubashir Hussain, Muhammad Ali Abdullah Shah, Sauli Elingarami, Nongyue He, Yueming Sun
Materials derived from biological sources not only offer biocompatibility but also adjust with the disease for elongated treatments and more effective therapies. These materials can be utilized as building blocks to construct state of the art drug delivery vehicles like nanoparticles, hydrogels, and nanofibers capable of dramatically enhancing the therapeutic efficiency in cancer treatment. New emerging trends in drug delivery design are constantly reported in recent literature using carbohydrates like cellulose, chitosan, and alginate and proteins like albumin, collagen, gelatin, and zein...
January 1, 2018: Journal of Biomedical Nanotechnology
Pingyun Yuan, Xinyu Qiu, Ronghua Jin, Yongkang Bai, Shiyu Liu, Xin Chen
Herein, we reveal a double emulsion method combining the sol-gel method to prepare poly(lactic-co-glycolic acid) microspheres with different porous structures for sequential release of two types of biomolecules. By controlling the ripening time of the emulsion, multiple interconnected chambers could be easily chosen to be either embedded in microspheres or opened to the surface. These two types of microspheres exhibited different kinetics for the release of both small molecules and proteins, where the release from microspheres with open pores (5 day over 90%) was much faster than the release from microspheres with embedded pores (25 day over 90%)...
February 20, 2018: Biomaterials Science
Fu-Chen Kung
Imbalance crosslink density and polymer concentration gradient is formed within the traditional alginate hydrogel using calcium chloride as a crosslinking agent in external gelation for instantaneously process. In this studying, type I collagen (Col I) blended calcium salt form of poly(γ-glutamic acid) (γCaPGA) was mixing with RGD-modified alginate with convenient gelation process and suitable for practical use. The hydrophilicity of the resulting hydrogels was evaluated through swelling tests, water retention capacity tests, and water vapor permeation tests...
2018: Bio-medical Materials and Engineering
Anita Krouwels, Ferry Melchels, Mattie H P Van Rijen, F Cumhur Oner, Wouter Dhert, M Tryfonidou, Laura Creemers
Hydrogels can facilitate nucleus pulposus regeneration, either for clinical application or research into mechanisms of regeneration. However, many different hydrogels and culture conditions for human degenerated nucleus pulposus (NP) have been employed, making literature data difficult to compare. Therefore, we compared six different hydrogels of natural polymers and investigated the role of serum in the medium and of osmolarity during expansion or redifferentation in an attempt to provide comparators for future studies...
February 17, 2018: Tissue Engineering. Part C, Methods
Xiancai Jiang, Nanping Xiang, Hongxiang Zhang, Yujun Sun, Zhen Lin, Linxi Hou
Development of bio-based hydrogels with good mechanical properties and high electrical conductivity is of great importance for their excellent biocompatibility and biodegradability. Novel electrically conducive and tough poly(vinyl alcohol)/sodium alginate (PVA/SA) composite hydrogel was obtained by a simple method in this paper. PVA and SA were firstly dissolved in distilled water to form the composite solution and the pure PVA/SA hydrogel was obtained through the freezing/thawing process. The pure PVA/SA hydrogels were subsequently immersed into the saturated NaCl aqueous solution to increase the gel strength and conductivity...
April 15, 2018: Carbohydrate Polymers
Stalin Kondaveeti, Pedro Vinicius de Assis Bueno, Ana Maria Carmona-Ribeiro, Fernanda Esposito, Nilton Lincopan, Maria Rita Sierakowski, Denise Freitas Siqueira Petri
Sodium alginate (Alg) reacted with antibiotic gentamicin sulfate (GS) in an aqueous-phase condition mediated by carbodiimide chemistry, in the molar ratios Alg: GS of (1:0.5), (1:1) and (1:2). The Alg-GS conjugated derivatives were characterized by elemental analysis for nitrogen content, Fourier transform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analyses (TGA) and water sorption measurements...
April 15, 2018: Carbohydrate Polymers
Zuyuan Luo, Siqi Zhang, Jijia Pan, Rui Shi, Hao Liu, Yalin Lyu, Xiao Han, Yan Li, Yue Yang, Zhixiu Xu, Yi Sui, En Luo, Yuanyuan Zhang, Shicheng Wei
The efficacy of stem cell-based bone tissue engineering has been hampered by cell death and limited fate control. A smart cell culture system with the capability of sequentially delivering multiple factors in specific growth stages, like the mechanism of the natural extracellular matrix modulating tissue formation, is attractive for enhancing cell activity and controlling cell fate. Here, a bone forming peptide-1 (BFP-1)-laden mesoporous silica nanoparticles (pep@MSNs) incorporated adhesion peptide, containing the arginine-glycine-aspartic acid (RGD) domain, modified alginate hydrogel (RA) system (pep@MSNs-RA) was developed to promote the activity and stimulate osteo-differentiation of human mesenchymal stem cells (hMSCs) in sequence...
February 10, 2018: Biomaterials
Sahar Sultan, Aji P Mathew
3-Dimensional (3D) printing provides a unique methodology for the customization of biomedical scaffolds with respect to size, shape, pore structure and pore orientation useful for tissue repair and regeneration. 3D printing was used to fabricate fully bio-based porous scaffolds of a double crosslinked interpenetrating polymer network (IPN) from a hydrogel ink of sodium alginate and gelatin (SA/G) reinforced with cellulose nanocrystals (CNCs). CNCs provided favorable rheological properties required for 3D printing...
February 16, 2018: Nanoscale
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"