Read by QxMD icon Read

alginate hydrogel

Simon Felz, Salah Al-Zuhairy, Olav Andreas Aarstad, Mark C M van Loosdrecht, Yue Mei Lin
To evaluate and develop methodologies for the extraction of gel-forming extracellular polymeric substances (EPS), EPS from aerobic granular sludge (AGS) was extracted using six different methods (centrifugation, sonication, ethylenediaminetetraacetic acid (EDTA), formamide with sodium hydroxide (NaOH), formaldehyde with NaOH and sodium carbonate (Na2CO3) with heat and constant mixing). AGS was collected from a pilot wastewater treatment reactor. The ionic gel-forming property of the extracted EPS of the six different extraction methods was tested with calcium ions (Ca(2+))...
September 26, 2016: Journal of Visualized Experiments: JoVE
Clive J Curley, Eimear B Dolan, Brenton Cavanagh, Janice O'Sullivan, Garry P Duffy, Bruce P Murphy
Localized delivery of stem cells is potentially a promising therapeutic strategy for regenerating damaged myocardium. Many studies focus on limiting the biologic component of cell loss, but few address the contribution of mechanical factors. This study investigates optimal parameters for retaining the largest volume of cell loaded hydrogels post intramyocardial injection, without compromising cell viability. In vitro, hydrogel was injected into porcine hearts using various needle designs. Hydrogel retention and distribution pattern was then determined...
October 20, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Dragica Spasojević, Danica Zmejkoski, Jasmina Glamočlija, Miloš Nikolić, Marina Soković, Verica Milošević, Ivana Jarić, Marijana Stojanović, Emilija Marinković, Talin Barisani-Asenbauer, Radivoje Prodanović, Miloš Jovanović, Ksenija Radotić
Nowadays bacterial resistance to known antibiotics is a serious health problem. In order to achieve more efficient treatment, lately there is an effort to find new substances, such as certain biomaterials, that are non-toxic to humans with antibiotic potential. Lignins and lignin-derived compounds have been proposed to be good candidates for use in medicine and health maintenance. In this study, the antibacterial activity of the lignin model polymer dehydrogenate polymer (DHP) in alginate hydrogel (Alg) was studied...
September 30, 2016: International Journal of Antimicrobial Agents
Sivanandane Sittadjody, Justin M Saul, Emmanuel C Opara
Two-dimensional (2D) culture systems do not represent the native microenvironment of the cells which is known to be three dimensional (3D), and surrounded by other cells from all directions. There exist interactions with other cell types in the same vicinity and this also cannot be replicated in a 2D culture. To study the cell-cell interactions between two or more cell types and their biological functions, a few 3D models have been used by different investigators. We have designed a 3D model to investigate the cell-cell interactions between various types of ovarian cells...
2017: Methods in Molecular Biology
Sami I Somo, Omaditya Khanna, Eric M Brey
Alginate hydrogels have been used for a broad variety of medical applications. The ability to assemble alginate gels at neutral pH and mild temperatures makes alginate a promising choice for the encapsulation and delivery of cells and proteins. This chapter covers the basics of cell encapsulation and protein delivery using two different variations of alginate microbeads, single layered and multilayer systems. The first section describes a method for encapsulating cells within alginate microbeads coated with a permselective polymer layer...
2017: Methods in Molecular Biology
D M Lavin, B E Bintz, C G Thanos
Hydrogel microcapsules have been used for decades to encapsulate cells and treat diseases ranging from neurodegenerative disorders to more systemic applications like Type I Diabetes. This cell encapsulation modality has been developed through more cumulative experiments than perhaps any other, owing to the relative ease of accessing the required materials, the commercial availability of droplet-generating instrumentation, and the mild microenvironment and unique permeability properties of hydrogels that are difficult to attain with alternative encapsulation systems employing thermoplastic materials...
2017: Methods in Molecular Biology
Marta Cavo, Marco Fato, Leonardo Peñuela, Francesco Beltrame, Roberto Raiteri, Silvia Scaglione
Three-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity. The hydrogel elastic modulus (E) was measured via atomic force microscopy (AFM) and a remarkable range (150-4000 kPa) was obtained...
October 13, 2016: Scientific Reports
Narges Naseri, Deepa Bhanumathyamma, Aji P Mathew, Kristiina Oksman, Lenart Girandon
Double crosslinked interpenetrating polymer network (IPN) hydrogels of sodium alginate and gelatin (SA/G) reinforced with 50 wt% cellulose nanocrystals (CNC) have been prepared via freeze-drying process. The IPNs were designed to incorporate CNC with carboxyl surface groups as a part of the network contribute to the structural integrity and mechanical stability of the hydrogel. Structural morphology studies of the hydrogels showed a 3-dimensional (3D) network of interconnected pores with diameters in the range of 10-192 μm and hierarchical pores with a nanostructured pore wall roughness, which has potential benefits for cell adhesion...
October 11, 2016: Biomacromolecules
Xingliang Dai, Cheng Ma, Qing Lan, Tao Xu
Glioma is still difficult to treat because of its high malignancy, high recurrence rate, and high resistance to anticancer drugs. An alternative method for research of gliomagenesis and drug resistance is to use in vitro tumor model that closely mimics the in vivo tumor microenvironment. In this study, we established a 3D bioprinted glioma stem cell model, using modified porous gelatin/alginate/fibrinogen hydrogel that mimics the extracellular matrix. Glioma stem cells achieved a survival rate of 86.92%, and proliferated with high cellular activity immediately following bioprinting...
October 11, 2016: Biofabrication
Ashwini Rahul Akkineni, Tilman Ahlfeld, Anja Lode, Michael Gelinsky
Three-dimensional extrusion of two different biomaterials in a core/shell (c/s) fashion has gained much interest in the last couple of years as it allows for fabricating constructs with novel and interesting properties. We now demonstrate that combining high concentrated (16.7 wt%) alginate hydrogels as shell material with low concentrated, soft biopolymer hydrogels as core leads to mechanically stable and robust 3D scaffolds. Alginate, chitosan, gellan gum, gelatin and collagen hydrogels were utilized successfully as core materials-hydrogels which are too soft for 3D plotting of open-porous structures without an additional mechanical support...
October 7, 2016: Biofabrication
Andrew C Daly, Susan E Critchley, Emily M Rencsok, Daniel J Kelly
Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro...
October 7, 2016: Biofabrication
Urška Potočar, Samo Hudoklin, Mateja Erdani Kreft, Janja Završnik, Krešimir Božikov, Mirjam Fröhlich
Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD) tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC). To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400-600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L...
2016: PloS One
Huizhen Zheng, Meng Gao, Ying Ren, Ruyun Lou, Hongguo Xie, Weiting Yu, Xiudong Liu, Xiaojun Ma
A pH-responsive carrier based on an ethylenediaminetetraacetic-calcium-alginate (EDTA-Ca-Alg) system was developed by controlling the release of Ca(2+). The system remained in the solution state at neutral pH since EDTA completely chelated the Ca(2+). In contrast, a hydrogel immediately formed when the pH was below 4.0, which triggered the in situ release of Ca(2+) from the EDTA-Ca compound and led to alginate-Ca binding. Taking advantage of the pH sensitivity, we prepared hydrogel microspheres with uniform size to entrap Lactobacillus rhamnosus ATCC 53103 through emulsification...
January 2, 2017: Carbohydrate Polymers
Fabián Martínez-Gómez, Juan Guerrero, Betty Matsuhiro, Jorge Pavez
Hydrogels, based on polysaccharides have found a number of applications as drug delivery carriers. In this work, hydrogels of full characterized sodium alginate (Mn 87,400g/mol) and commercial poly(vinyl alcohol) (PVA) sensitive to pH and temperature stimuli were obtained using a simple, controlled, green, low cost method based on freeze-thaw cycles. Stable hydrogels of sodium alginate/PVA with 0.5:1.5 and 1.0:1.0w/v concentrations showed very good swelling ratio values in distilled water (14 and 20g/g, respectively)...
January 2, 2017: Carbohydrate Polymers
Holly E Weiss-Bilka, Megan E McGann, Matthew J Meagher, Ryan K Roeder, Diane R Wagner
Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however relatively little is known about the best conditions for doing so. The objective of this study was to compare the bone forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels...
September 30, 2016: Journal of Tissue Engineering and Regenerative Medicine
Chong Hu, Han Sun, Zhengzhi Liu, Yin Chen, Yangfan Chen, Hongkai Wu, Kangning Ren
The diffusion of molecules such as nutrients and oxygen through densely packed cells is impeded by blockage and consumption by cells, resulting in a limited depth of penetration. This has been a major hurdle to a bulk (3-D) culture. Great efforts have been made to develop methods for generating branched microchannels inside hydrogels to support mass exchange inside a bulk culture. These previous attempts faced a common obstacle: researchers tried to fabricate microchannels with gels already loaded with cells, but the fabrication procedures are often harmful to the embedded cells...
July 2016: Biomicrofluidics
I R Brito, G M Silva, A D Sales, C H Lobo, G Q Rodrigues, R F Sousa, Aaa Moura, Cem Calderón, M Bertolini, C C Campello, J Smitz, J R Figueiredo
This study aimed to establish a culture system that improves the in vitro development of caprine preantral follicles. In a first experiment, follicles were encapsulated as a single unit per bead and cultured singly or in groups or with five follicles in the same alginate (ALG) bead for 18 days. In a subsequent experiment, the "five follicles per bead" design was chosen to culture in ALG, fibrin-alginate (FA) or hyaluronate (HA) for 18 days. In a third experiment, we chose the five follicles per bead in FA to culture for 30 days...
September 21, 2016: Reproduction in Domestic Animals, Zuchthygiene
Guiting Liu, Hongxun Zhou, Hong Wu, Rong Chen, Shaoyun Guo
Homogeneous alginate hydrogels were facilely fabricated through solution extrusion process. CaCO3 and D-glucono-δ-lactone (GDL) were used as the gelation agents. The slow gelation of alginate was realized by the in-situ release of Ca(2+) from CaCO3 particles induced by hydrolysis of GDL to reduce pH. Slight gelation during the extrusion caused the enhanced strength of the alginate solutions, leading to the extrudability of the blends. This method enables to produce alginate hydrogels in a single step via extrusion, which is economically advantageous to conventional lab-scale preparation for mass production...
October 7, 2016: Journal of Biomaterials Science. Polymer Edition
Jiaqi Chu, Shaodong Zeng, Liyang Gao, Thomas Groth, Zhiwen Li, Junchao Kong, Mingyan Zhao, Lihua Li
PURPOSE: Polymer porous scaffolds and hydrogels have been separately employed and explored for a wide range of applications including cell encapsulation, drug delivery, and tissue engineering. METHODS: In this study, a three-dimensional poly (L-lactic acid) (PLLA) scaffold with interconnected and homogeneously distributed pores was fabricated to support the alginate hydrogel (Alg). The gels were filled into the porous scaffold, which acted as an analogue of native extracellular matrix (ECM) for entrapment of cells within a support of predefined shape...
October 10, 2016: International Journal of Artificial Organs
Kenichi Arai, Toshiko Yoshida, Motonori Okabe, Mitsuaki Goto, Tanveer Ahmad Mir, Chika Soko, Yoshinari Tsukamoto, Toshihiro Akaike, Toshio Nikaido, Kaixuan Zhou, Makoto Nakamura
The development of new three-dimensional (3D) cell culture system that maintains the physiologically relevant signals of hepatocytes is essential in drug discovery and tissue engineering research. Conventional two-dimensional (2D) culture yields cell growth, proliferation and differentiation. However, gene expression and signaling profiles can be different from in vivo environment. Here, we report the fabrication of a 3D culture system using an artificial scaffold and our custom-made inkjet 3D-bioprinter as a new strategy for studying liver-specific functions of hepatocytes...
September 19, 2016: Journal of Biomedical Materials Research. Part A
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"