Read by QxMD icon Read


Rui Hou, Luo Jiang, Zhuo Yang, Shizhuo Wang, Qifang Liu
The Rab GTPase family protein Rab14 has been implicated in cancer development. However, its clinical significance in ovarian cancers and its biological effects have not been examined. The present study aims to examine the clinical significance, biological roles, and molecular mechanism of Rab14 in ovarian cancer progression. We examined expression pattern of Rab14 in 122 cases of ovarian cancer specimens using immunohistochemistry and found Rab14 overexpression correlated with FIGO stage (p = 0.0041). We depleted Rab14 in SKOV3 cells using siRNA and overexpressed Rab14 in SW626 cells...
October 7, 2016: Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine
Julie Jurczyluk, Marcia A Munoz, Oliver P Skinner, Ryan C Chai, Naveid Ali, Umaimainthan Palendira, Julian Mw Quinn, Alexandra Preston, Stuart G Tangye, Andrew J Brown, Elizabeth Argent, John B Ziegler, Sam Mehr, Michael J Rogers
Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate-cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions...
July 5, 2016: Immunology and Cell Biology
Caroline Mauvezin, Thomas P Neufeld
The intracellular movement of membrane-bound vesicles is closely tied to their formation, maturation and ultimate function within the cell. Motor proteins and their associated cytoskeletal networks are critical for vesicle transport, but whether these factors play a more direct role in vesicle biogenesis is unclear. In recent work, we found that the Drosophila kinesin proteins Khc and Klp98A are both required for the normal anterograde movement of autophagosomes and autolysosomes during starvation-induced autophagy...
May 4, 2016: Small GTPases
Paul Duffield Brewer, Estifanos N Habtemichael, Irina Romenskaia, Adelle C F Coster, Cynthia Corley Mastick
Insulin increases glucose uptake by increasing the rate of exocytosis of the facilitative glucose transporter isoform 4 (Glut4) relative to its endocytosis. Insulin also releases Glut4 from highly insulin-regulated secretory compartments (GSVs or Glut4 storage vesicles) into constitutively cycling endosomes. Previously it was shown that both overexpression and knockdown of the small GTP-binding protein Rab14 decreased Glut4 translocation to the plasma membrane (PM). To determine the mechanism of this perturbation, we measured the effects of Rab14 knockdown on the trafficking kinetics of Glut4 relative to two proteins that partially co-localize with Glut4, the transferrin (Tf) receptor and low-density-lipoprotein-receptor-related protein 1 (LRP1)...
May 15, 2016: Biochemical Journal
Wilhelm W Just, Johan Peränen
In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane...
May 2016: Biochimica et Biophysica Acta
Caroline Mauvezin, Amanda L Neisch, Carlos I Ayala, Jung Kim, Abigail Beltrame, Christopher R Braden, Melissa K Gardner, Thomas S Hays, Thomas P Neufeld
Degradation of cellular material by autophagy is essential for cell survival and homeostasis, and requires intracellular transport of autophagosomes to encounter acidic lysosomes through unknown mechanisms. Here, we identify the PX-domain-containing kinesin Klp98A as a new regulator of autophagosome formation, transport and maturation in Drosophila. Depletion of Klp98A caused abnormal clustering of autophagosomes and lysosomes at the cell center and reduced the formation of starvation-induced autophagic vesicles...
March 1, 2016: Journal of Cell Science
Ernest C So, Gunnar N Schroeder, Danielle Carson, Corinna Mattheis, Aurélie Mousnier, Malgorzata Broncel, Edward W Tate, Gad Frankel
Legionella pneumophila, the causative agent of Legionnaire's disease, uses its type IV secretion system to translocate over 300 effector proteins into host cells. These effectors subvert host cell signaling pathways to ensure bacterial proliferation. Despite their importance for pathogenesis, the roles of most of the effectors are yet to be characterized. Key to understanding the function of effectors is the identification of host proteins they bind during infection. We previously developed a novel tandem-affinity purification (TAP) approach using hexahistidine and BirA-specific biotinylation tags for isolating translocated effector complexes from infected cells whose composition were subsequently deciphered by mass spectrometry...
March 11, 2016: Journal of Biological Chemistry
Hiroki Takeuchi, Akihiko Takada, Masae Kuboniwa, Atsuo Amano
Although human gingival epithelium prevents intrusions by periodontal bacteria, Porphyromonas gingivalis, the most well-known periodontal pathogen, is able to invade gingival epithelial cells and pass through the epithelial barrier into deeper tissues. We previously reported that intracellular P. gingivalis exits from gingival epithelial cells via a recycling pathway. However, the underlying molecular process remains unknown. In the present study, we found that the pathogen localized in early endosomes recruits VAMP2 and Rab4A...
July 2016: Cellular Microbiology
Naveid Ali, Julie Jurczyluk, Gemma Shay, Zakir Tnimov, Kirill Alexandrov, Marcia A Munoz, Oliver P Skinner, Nathan J Pavlos, Michael J Rogers
Bisphosphonate drugs such as zoledronic acid (ZOL), used for the treatment of common bone disorders, target the skeleton and inhibit bone resorption by preventing the prenylation of small GTPases in bone-destroying osteoclasts. Increasing evidence indicates that bisphosphonates also have pleiotropic effects outside the skeleton, most likely via cells of the monocyte/macrophage lineage exposed to nanomolar circulating drug concentrations. However, no effects of such low concentrations of ZOL have been reported using existing approaches...
October 2, 2015: Small GTPases
Gunnar N Schroeder, Philipp Aurass, Clare V Oates, Edward W Tate, Elizabeth L Hartland, Antje Flieger, Gad Frankel
Legionella pneumophila is a bacterial pathogen that thrives in alveolar macrophages, causing a severe pneumonia. The virulence of L. pneumophila depends on its Dot/Icm type IV secretion system (T4SS), which delivers more than 300 effector proteins into the host, where they rewire cellular signaling to establish a replication-permissive niche, the Legionella-containing vacuole (LCV). Biogenesis of the LCV requires substantial redirection of vesicle trafficking and remodeling of intracellular membranes. In order to achieve this, several T4SS effectors target regulators of membrane trafficking, while others resemble lipases...
October 2015: Infection and Immunity
Julian Gambarte Tudela, Anahi Capmany, Maryse Romao, Cristian Quintero, Stephanie Miserey-Lenkei, Graca Raposo, Bruno Goud, Maria Teresa Damiani
Given their obligate intracellular lifestyle, Chlamydia trachomatis ensure that they have access to multiple host sources of essential lipids by interfering with vesicular transport. These bacteria hijack Rab6-, Rab11- and Rab14-controlled trafficking pathways to acquire sphingomyelin from the Golgi complex. Another important source of sphingolipids, phospholipids and cholesterol are multivesicular bodies (MVBs). Despite their participation in chlamydial inclusion development and bacterial replication, the molecular mechanisms mediating the interaction between MVBs and chlamydial inclusions remain unknown...
August 15, 2015: Journal of Cell Science
Victoria Cano, Catalina March, Jose Luis Insua, Nacho Aguiló, Enrique Llobet, David Moranta, Verónica Regueiro, Gerard P Brennan, Maria Isabel Millán-Lou, Carlos Martín, Junkal Garmendia, José A Bengoechea
Klebsiella pneumoniae is an important cause of community-acquired and nosocomial pneumonia. Evidence indicates that Klebsiella might be able to persist intracellularly within a vacuolar compartment. This study was designed to investigate the interaction between Klebsiella and macrophages. Engulfment of K. pneumoniae was dependent on host cytoskeleton, cell plasma membrane lipid rafts and the activation of phosphoinositide 3-kinase (PI3K). Microscopy studies revealed that K. pneumoniae resides within a vacuolar compartment, the Klebsiella-containing vacuole (KCV), which traffics within vacuoles associated with the endocytic pathway...
November 2015: Cellular Microbiology
Patrick Lall, Andrew J Lindsay, Sara Hanscom, Tea Kecman, Elizabeth S Taglauer, Una M McVeigh, Edward Franklin, Mary W McCaffrey, Amir R Khan
Rab GTPases recruit effector proteins, via their GTP-dependent switch regions, to distinct subcellular compartments. Rab11 and Rab25 are closely related small GTPases that bind to common effectors termed the Rab11 family of interacting proteins (FIPs). The FIPs are organized into two subclasses (class I and class II) based on sequence and domain organization, and both subclasses contain a highly conserved Rab-binding domain at their C termini. Yeast two-hybrid and biochemical studies have revealed that the more distantly related Rab14 also interacts with class I FIPs...
July 24, 2015: Journal of Biological Chemistry
Andrew J Lindsay, Mary W McCaffrey
Rab14 functions in the endocytic recycling pathway, having been implicated in the trafficking of the ADAM10 protease, GLUT4, and components of cell-cell junctions to the plasma membrane. It localizes predominantly to endocytic membranes with a pool also found on trans-Golgi network (TGN) membranes, and is most closely related to the Rab11 subfamily of GTPases. Certain intracellular bacteria such as Legionella pneumophila, Chlamydia trachomatis, and Salmonella enterica utilize Rab14 to promote their maturation and replication...
2015: Methods in Molecular Biology
Sabrina J Nolan, Julia D Romano, Thomas Luechtefeld, Isabelle Coppens
Toxoplasma gondii and Neospora caninum, which cause the diseases toxoplasmosis and neosporosis, respectively, are two closely related apicomplexan parasites. They have similar heteroxenous life cycles and conserved genomes and share many metabolic features. Despite these similarities, T. gondii and N. caninum differ in their transmission strategies and zoonotic potential. Comparative analyses of the two parasites are important to identify the unique biological features that underlie the basis of host preference and pathogenicity...
May 2015: Eukaryotic Cell
Ruifeng Lu, Dogukan Dalgalan, Edward K Mandell, Sara S Parker, Sourav Ghosh, Jean M Wilson
PKCι is essential for the establishment of epithelial polarity and the normal assembly of tight junctions. We find that PKCι knockdown does not compromise the steady-state distribution of most tight junction proteins but results in increased transepithelial resistance (TER) and decreased paracellular permeability. Analysis of the levels of tight junction components demonstrates that claudin-2 protein levels are decreased. However, other tight junction proteins, such as claudin-1, ZO-1, and occludin, are unchanged...
April 15, 2015: Molecular Biology of the Cell
Blessing Okai, Natalie Lyall, Neil A R Gow, Judith M Bain, Lars-Peter Erwig
Avoidance of innate immune defense is an important mechanism contributing to the pathogenicity of microorganisms. The fungal pathogen Candida albicans undergoes morphogenetic switching from the yeast to the filamentous hyphal form following phagocytosis by macrophages, facilitating its escape from the phagosome, which can result in host cell lysis. We show that the intracellular host trafficking GTPase Rab14 plays an important role in protecting macrophages from lysis mediated by C. albicans hyphae. Live-cell imaging of macrophages expressing green fluorescent protein (GFP)-tagged Rab14 or dominant negative Rab14, or with small interfering RNA (siRNA)-mediated knockdown of Rab14, revealed the temporal dynamics of this protein and its influence on the maturation of macrophage phagosomes following the engulfment of C...
April 2015: Infection and Immunity
Ruifeng Lu, Lorraine Stewart, Jean M Wilson
GOPC (FIG/PIST/CAL) is a PDZ-domain scaffolding protein that regulates the trafficking of a wide array of proteins, including small GTPases, receptors and cell surface molecules such as cadherin 23 and cystic fibrosis transmembrane regulator. In Madin-Darby canine kidney (MDCK) cells, we find that GOPC localizes to the trans-Golgi network (TGN) but not to the cis- or trans-Golgi cisternae. Colocalization occurs with the early endosome Rab GTPase Rab5 and a TGN/endosome marker Rab14 but not with Rab11, a marker of recycling endosomes...
May 2015: Cell and Tissue Research
Ekansh Mittal, Santosh Kumar, Aejazur Rahman, Musti V Krishnasastry
The pathogenic traits of TlyA proteins of Mycobacterium tuberculosis are not known. Expressions of TlyA in bacteria that do not express endogenous TlyA adhere better to RAW264.7 macrophages and get phagocytosed efficiently. The internalized bacteria avoid acidification to the extent of greater than 65 percent in the case of both TlyA-expressing E. coli and M. smegmatis. Consistent with this observation, we have observed decreased co-localizaton of Lysosomal Membrane Associated Protein-1 (approx. 35 percent), Early Endosomal Antigen-1 (approx...
December 2014: Journal of Biosciences
Jiangtao Sun, Xiaoshang Feng, Shegan Gao, Zhongyue Xiao
microRNAs (miRNAs) have been demonstrated to be important gene regulators with critical roles in diverse biological processes, including tumorigenesis. Accumulating evidence suggests that miR‑338-3p exerts a tumor suppressor role and is downregulated in tumors, including gastric cancer and colorectal carcinoma. However, the role of miR‑338-3p in lung cancer, particularly non‑small‑cell lung carcinoma (NSCLC), has remained elusive. In the present study, the expression levels of miR‑338-3p in NSCLC tissues were compared with those of matched normal tissues by use of polymerase chain reaction analysis...
February 2015: Molecular Medicine Reports
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"