keyword
MENU ▼
Read by QxMD icon Read
search

Myc AND BRD4

keyword
https://www.readbyqxmd.com/read/28930680/systematic-kinase-inhibitor-profiling-identifies-cdk9-as-a-synthetic-lethal-target-in-nut-midline-carcinoma
#1
Johannes Brägelmann, Marcel A Dammert, Felix Dietlein, Johannes M Heuckmann, Axel Choidas, Stefanie Böhm, André Richters, Debjit Basu, Verena Tischler, Carina Lorenz, Peter Habenberger, Zhizhou Fang, Sandra Ortiz-Cuaran, Frauke Leenders, Jan Eickhoff, Uwe Koch, Matthäus Getlik, Martin Termathe, Muhammad Sallouh, Zoltán Greff, Zoltán Varga, Hyatt Balke-Want, Christopher A French, Martin Peifer, H Christian Reinhardt, László Örfi, György Kéri, Sascha Ansén, Lukas C Heukamp, Reinhard Büttner, Daniel Rauh, Bert M Klebl, Roman K Thomas, Martin L Sos
Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells...
September 19, 2017: Cell Reports
https://www.readbyqxmd.com/read/28881673/bromodomain-inhibition-shows-antitumoral-activity-in-mice-and-human-luminal-breast-cancer
#2
Montserrat Pérez-Salvia, Laia Simó-Riudalbas, Pere Llinàs-Arias, Laura Roa, Fernando Setien, Marta Soler, Manuel Castro de Moura, James E Bradner, Eva Gonzalez-Suarez, Catia Moutinho, Manel Esteller
BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1)...
August 1, 2017: Oncotarget
https://www.readbyqxmd.com/read/28805820/prostate-cancer-associated-spop-mutations-confer-resistance-to-bet-inhibitors-through-stabilization-of-brd4
#3
Xiangpeng Dai, Wenjian Gan, Xiaoning Li, Shangqian Wang, Wei Zhang, Ling Huang, Shengwu Liu, Qing Zhong, Jianping Guo, Jinfang Zhang, Ting Chen, Kouhei Shimizu, Francisco Beca, Mirjam Blattner, Divya Vasudevan, Dennis L Buckley, Jun Qi, Lorenz Buser, Pengda Liu, Hiroyuki Inuzuka, Andrew H Beck, Liewei Wang, Peter J Wild, Levi A Garraway, Mark A Rubin, Christopher E Barbieri, Kwok-Kin Wong, Senthil K Muthuswamy, Jiaoti Huang, Yu Chen, James E Bradner, Wenyi Wei
The bromodomain and extraterminal (BET) family of proteins comprises four members-BRD2, BRD3, BRD4 and the testis-specific isoform BRDT-that largely function as transcriptional coactivators and play critical roles in various cellular processes, including the cell cycle, apoptosis, migration and invasion. BET proteins enhance the oncogenic functions of major cancer drivers by elevating the expression of these drivers, such as c-Myc in leukemia, or by promoting the transcriptional activities of oncogenic factors, such as AR and ERG in prostate cancer...
September 2017: Nature Medicine
https://www.readbyqxmd.com/read/28765013/structure-based-design-synthesis-and-in-vitro-antiproliferative-effects-studies-of-novel-dual-brd4-hdac-inhibitors
#4
Mingfeng Shao, Linhong He, Li Zheng, Lingxiao Huang, Yuanyuan Zhou, Taijing Wang, Yong Chen, Mingsheng Shen, Fang Wang, Zhuang Yang, Lijuan Chen
Histone acetylation marks play important roles in controlling gene expressions and are removed by histone deacetylases (HDACs). These marks are read by bromodomain and extra-terminal (BET) proteins, whose targeted inhibitors are under clinical investigation. BET and HDAC inhibitors have been demonstrated to be synergistically killing in Mycinduced murine lymphoma. Herein, we combine the inhibitory activities of BET and HDAC into one molecule through structure-based design method and evaluate its function. The majority of these synthesized compounds showed inhibitory activity against second bromdomains(BRD) of BRD4 and HDAC1...
September 1, 2017: Bioorganic & Medicinal Chemistry Letters
https://www.readbyqxmd.com/read/28681984/brd4-promotes-gastric-cancer-progression-through-the-transcriptional-and-epigenetic-regulation-of-c-myc
#5
Mingchen Ba, Hui Long, Zhaofei Yan, Shuai Wang, Yinbing Wu, Yinuo Tu, Yuanfeng Gong, Shuzhong Cui
Although the significance of BRD4 in the epigenetic memory and cancer genesis has been intensively investigated, little is known about its function and potential roles during the generation and progression of gastric cancer. We report here that BRD4 increases the proliferation and represses the apoptosis of gastric cancer cells through activating c-MYC via transcriptional and epigenetic regulation mechanisms. Expression analyses in both small and large cohort of sample show that BRD4 is highly expressed in gastric cancer tissues/cells when compared with the adjacent non-tumor tissues/normal cells...
July 6, 2017: Journal of Cellular Biochemistry
https://www.readbyqxmd.com/read/28669341/jq1-a-bet-inhibitor-synergizes-with-cisplatin-and-induces-apoptosis-in-highly-chemoresistant-malignant-pleural-mesothelioma-cells
#6
Ilaria Zanellato, Donato Colangelo, Domenico Osella
Malignant pleural mesothelioma (MPM) is an asbestos-associated tumor with poor prognosis and few therapeutic options. JQ1, a selective antagonist of BRD4, modulates transcription of oncogenes, including MPM chemoresistance-associated c-Myc and Fra-1. We investigated if JQ1 could enhance the efficacy of cisplatin against MPM. The antiproliferative activity of cisplatin in combination with JQ1 was assessed on MPM cell lines representative of the cellular phenotypes of this tumor (epithelioid, sarcomatoid and biphasic), and on one cisplatin-resistant sub-line (established in our laboratory)...
June 23, 2017: Current Cancer Drug Targets
https://www.readbyqxmd.com/read/28663582/bet-protein-proteolysis-targeting-chimera-protac-exerts-potent-lethal-activity-against-mantle-cell-lymphoma-cells
#7
B Sun, W Fiskus, Y Qian, K Rajapakshe, K Raina, K G Coleman, A P Crew, A Shen, D T Saenz, C P Mill, A J Nowak, N Jain, L Zhang, M Wang, J D Khoury, C Coarfa, C M Crews, K N Bhalla
Bromodomain extraterminal protein (BETP) inhibitors transcriptionally repress oncoproteins and NFkB target genes, which undermines the growth and survival of MCL cells. However, BETi treatment causes accumulation of BETPs, associated with reversible binding and incomplete inhibition of BRD4, which potentially compromises the activity of BETi in MCL cells. Unlike BETi, BET-PROTACs (proteolysis-targeting chimera) ARV-825 and ARV-771 (Arvinas, Inc.) recruit and utilize an E3-ubiquitin ligase to effectively degrade BETPs in MCL cells...
June 30, 2017: Leukemia: Official Journal of the Leukemia Society of America, Leukemia Research Fund, U.K
https://www.readbyqxmd.com/read/28642448/combined-brd4-and-cdk9-inhibition-as-a-new-therapeutic-approach-in-malignant-rhabdoid-tumors
#8
Natalia Moreno, Till Holsten, Julius Mertins, Annabelle Zhogbi, Pascal Johann, Marcel Kool, Michael Meisterernst, Kornelius Kerl
Rhabdoid tumors are caused by the deletion of SMARCB1, whose protein encodes the SMARCB1 subunit of the chromatin remodeling complex SWI/SNF that is involved in global chromatin organization and gene expression control. Simultaneously inhibiting the main players involved in the deregulated transcription machinery is a promising option for preventing exaggerated tumor cell proliferation and survival as it may bypass compensatory mechanisms. In support of this hypothesis, we report efficient impairment of cellular proliferation and strong induction of cell death elicited by inhibition of bromodomain protein BRD4 and transcription kinase CDK9 using small molecular compounds...
June 21, 2017: Oncotarget
https://www.readbyqxmd.com/read/28624801/bromodomain-inhibition-shows-antitumoral-activity-in-mice-and-human-luminal-breast-cancer
#9
Montserrat Pérez-Salvia, Laia Simó-Riudalbas, Pere Llinàs-Arias, Laura Roa, Fernando Setien, Marta Soler, Manuel Castro de Moura, James E Bradner, Eva Gonzalez-Suarez, Catia Moutinho, Manel Esteller
BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1)...
May 29, 2017: Oncotarget
https://www.readbyqxmd.com/read/28549889/synthesis-and-evaluation-of-novel-dual-brd4-hdac-inhibitors
#10
Seika Amemiya, Takao Yamaguchi, Yuichi Hashimoto, Tomomi Noguchi-Yachide
Epigenetic regulation of gene expression via histone acetylation modulates many cellular processes, including apoptosis, the cell cycle, cell growth and differentiation, and inhibitors are promising drug candidates. We have previously developed inhibitors of BRD4, which recognizes acetylated lysine residue on histones and recruits transcription elongation factor to the transcription start site, while inhibitors of histone deacetylase (HDAC), which catalyzes the removal of acetyl groups on histones, are already in clinical use for cancer treatment...
May 17, 2017: Bioorganic & Medicinal Chemistry
https://www.readbyqxmd.com/read/28545522/brd4-inhibition-suppresses-cell-growth-migration-and-invasion-of-salivary-adenoid-cystic-carcinoma
#11
Limei Wang, Xiuyin Wu, Ruolin Wang, Chengzhe Yang, Zhi Li, Cunwei Wang, Fenghe Zhang, Pishan Yang
BACKGROUND: Bromodomain-containing protein 4 (BRD4) inhibition is a new therapeutic strategy for many malignancies. In this study, we aimed to explore the effect of BRD4 inhibition by JQ1 on in vitro cell growth, migration and invasion of salivary adenoid cystic carcinoma (SACC). METHODS: The human normal epithelial cells and SACC cells (ACC-LM and ACC-83) were treated with JQ1 at concentrations of 0, 0.1, 0.5 or 1 μM. Cell Counting Kit-8 (CCK-8) assay was performed to evaluate cell proliferation...
May 25, 2017: Biological Research
https://www.readbyqxmd.com/read/28490802/transcriptome-analysis-of-dominant-negative-brd4-mutants-identifies-brd4-specific-target-genes-of-small-molecule-inhibitor-jq1
#12
Tim-Michael Decker, Michael Kluge, Stefan Krebs, Nilay Shah, Helmut Blum, Caroline C Friedel, Dirk Eick
The bromodomain protein Brd4 is an epigenetic reader and plays a critical role in the development and maintenance of leukemia. Brd4 binds to acetylated histone tails and activates transcription by recruiting the positive elongation factor P-TEFb. Small molecule inhibitor JQ1 competitively binds the bromodomains of Brd4 and displaces the protein from acetylated histones. However, it remains unclear whether genes targeted by JQ1 are mainly regulated by Brd4 or by other bromodomain proteins such as Brd2 and Brd3...
May 10, 2017: Scientific Reports
https://www.readbyqxmd.com/read/28391274/inhibition-of-brd4-suppresses-cell-proliferation-and-induces-apoptosis-in-renal-cell-carcinoma
#13
Xinchao Wu, Dong Liu, Xuemei Gao, Fei Xie, Dan Tao, Xingyuan Xiao, Liang Wang, Guosong Jiang, Fuqing Zeng
BACKGROUND/AIMS: Renal cell carcinoma (RCC) remains an intractable genitourinary malignancy. Resistance to chemotherapy or targeted therapies in RCC is presumably due to the complicated underlying molecular mechanisms and insufficient understanding. The aim of this research was to assess the expression and role of bromodomain-4 protein (BRD4) in RCC and evaluate the effects of BRD4 inhibitor JQ1 for RCC treatment. METHODS: BRD4 expressionlevels were assessed by qRT-PCR and western blot in RCC tissues and cells...
2017: Cellular Physiology and Biochemistry
https://www.readbyqxmd.com/read/28369619/histone-deacetylase-class-i-inhibition-promotes-epithelial-gene-expression-in-pancreatic-cancer-cells-in-a-brd4-and-myc-dependent-manner
#14
Vivek Kumar Mishra, Florian Wegwitz, Robyn Laura Kosinsky, Madhobi Sen, Roland Baumgartner, Tanja Wulff, Jens T Siveke, Hans-Ulrich Schildhaus, Zeynab Najafova, Vijayalakshmi Kari, Hella Kohlhof, Elisabeth Hessmann, Steven A Johnsen
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with a particularly dismal prognosis. Histone deacetylases (HDAC) are epigenetic modulators whose activity is frequently deregulated in various cancers including PDAC. In particular, class-I HDACs (HDAC 1, 2, 3 and 8) have been shown to play an important role in PDAC. In this study, we investigated the effects of the class I-specific HDAC inhibitor (HDACi) 4SC-202 in multiple PDAC cell lines in promoting tumor cell differentiation. We show that 4SC-202 negatively affects TGFβ signaling and inhibits TGFβ-induced epithelial-to-mesenchymal transition (EMT)...
June 20, 2017: Nucleic Acids Research
https://www.readbyqxmd.com/read/28281917/brd4-inhibitor-ibet-upregulates-p27kip-cip-protein-stability-in-neuroendocrine-tumor-cells
#15
Lei Wang, Smita Matkar, Gengchen Xie, Chiying An, Xin He, Xiangchen Kong, Xiuheng Liu, Xianxin Hua
The prevalence of neuroendocrine tumors (NETs) has recently been increasing. Although various drugs such as Octreotide and its analogs show certain efficacy, NETs in many patients progress and metastasize. It is desirable to develop new interventions to improve the therapy. Here we show that human neuroendocrine tumor BON cells are resistant to several drugs commonly used for NET therapy, including Octreotide that activates somatostatin receptor-induced anti-proliferation, and Capecitabine and Temozolimide that damage DNA...
April 3, 2017: Cancer Biology & Therapy
https://www.readbyqxmd.com/read/28249162/bet-bromodomain-inhibitors-engage-the-host-immune-system-and-regulate-expression-of-the-immune-checkpoint-ligand-pd-l1
#16
Simon J Hogg, Stephin J Vervoort, Sumit Deswal, Christopher J Ott, Jason Li, Leonie A Cluse, Paul A Beavis, Phillip K Darcy, Benjamin P Martin, Andrew Spencer, Anna K Traunbauer, Irina Sadovnik, Karin Bauer, Peter Valent, James E Bradner, Johannes Zuber, Jake Shortt, Ricky W Johnstone
BET inhibitors (BETi) target bromodomain-containing proteins and are currently being evaluated as anti-cancer agents. We find that maximal therapeutic effects of BETi in a Myc-driven B cell lymphoma model required an intact host immune system. Genome-wide analysis of the BETi-induced transcriptional response identified the immune checkpoint ligand Cd274 (Pd-l1) as a Myc-independent, BETi target-gene. BETi directly repressed constitutively expressed and interferon-gamma (IFN-γ) induced CD274 expression across different human and mouse tumor cell lines and primary patient samples...
February 28, 2017: Cell Reports
https://www.readbyqxmd.com/read/28205554/the-oncoppi-network-of-cancer-focused-protein-protein-interactions-to-inform-biological-insights-and-therapeutic-strategies
#17
Zenggang Li, Andrei A Ivanov, Rina Su, Valentina Gonzalez-Pecchi, Qi Qi, Songlin Liu, Philip Webber, Elizabeth McMillan, Lauren Rusnak, Cau Pham, Xiaoqian Chen, Xiulei Mo, Brian Revennaugh, Wei Zhou, Adam Marcus, Sahar Harati, Xiang Chen, Margaret A Johns, Michael A White, Carlos Moreno, Lee A D Cooper, Yuhong Du, Fadlo R Khuri, Haian Fu
As genomics advances reveal the cancer gene landscape, a daunting task is to understand how these genes contribute to dysregulated oncogenic pathways. Integration of cancer genes into networks offers opportunities to reveal protein-protein interactions (PPIs) with functional and therapeutic significance. Here, we report the generation of a cancer-focused PPI network, termed OncoPPi, and identification of >260 cancer-associated PPIs not in other large-scale interactomes. PPI hubs reveal new regulatory mechanisms for cancer genes like MYC, STK11, RASSF1 and CDK4...
February 16, 2017: Nature Communications
https://www.readbyqxmd.com/read/28137841/dual-activity-pi3k-brd4-inhibitor-for-the-orthogonal-inhibition-of-myc-to-block-tumor-growth-and-metastasis
#18
Forest H Andrews, Alok R Singh, Shweta Joshi, Cassandra A Smith, Guillermo A Morales, Joseph R Garlich, Donald L Durden, Tatiana G Kutateladze
MYC is a major cancer driver but is documented to be a difficult therapeutic target itself. Here, we report on the biological activity, the structural basis, and therapeutic effects of the family of multitargeted compounds that simultaneously disrupt functions of two critical MYC-mediating factors through inhibiting the acetyllysine binding of BRD4 and the kinase activity of PI3K. We show that the dual-action inhibitor impairs PI3K/BRD4 signaling in vitro and in vivo and affords maximal MYC down-regulation...
February 14, 2017: Proceedings of the National Academy of Sciences of the United States of America
https://www.readbyqxmd.com/read/28115161/cg13250-a-novel-bromodomain-inhibitor-suppresses-proliferation-of-multiple-myeloma-cells-in-an-orthotopic-mouse-model
#19
Natsuki Imayoshi, Makoto Yoshioka, Jay Chauhan, Susumu Nakata, Yuki Toda, Steven Fletcher, Jeffrey W Strovel, Kazuyuki Takata, Eishi Ashihara
Multiple myeloma (MM) is characterized by the clonal proliferation of neoplastic plasma cells. Despite a stream of new molecular targets based on better understanding of the disease, MM remains incurable. Epigenomic abnormalities contribute to the pathogenesis of MM. bromodomain 4 (BRD4), a member of the bromodomain and extraterminal (BET) family, binds to acetylated histones during M/G1 transition in the cell cycle promoting progression to S phase. In this study, we investigated the effects of a novel BET inhibitor CG13250 on MM cells...
March 4, 2017: Biochemical and Biophysical Research Communications
https://www.readbyqxmd.com/read/28073847/identification-of-ccr2-and-cd180-as-robust-pharmacodynamic-tumor-and-blood-biomarkers-for-clinical-use-with-brd4-bet-inhibitors
#20
Tammie C Yeh, Greg O'Connor, Philip Petteruti, Austin Dulak, Maureen Hattersley, J Carl Barrett, Huawei Chen
PURPOSE: AZD5153 is a novel BRD4/BET inhibitor with a distinctive bivalent bromodomain binding mode. To support its clinical development, we identified pharmacodynamic (PD) biomarkers for use in clinical trials to establish target engagement. EXPERIMENTAL DESIGN: CCR2 and CD180 mRNAs, initially identified from whole transcriptome profiling, were further evaluated by quantitative PCR in hematologic cell lines, xenografts, and whole blood from rat, healthy volunteers, and patients with cancer...
January 10, 2017: Clinical Cancer Research: An Official Journal of the American Association for Cancer Research
keyword
keyword
90153
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"