Read by QxMD icon Read

microfluidic chip

Xiaoqin Zhong, Liang Qiao, Géraldine Stauffer, Baohong Liu, Hubert H Girault
A polyimide microfluidic chip with a microhole emitter (Ø 10-12 μm) created on top of a microchannel by scanning laser ablation has been designed for nanoelectrospray ionization (spyhole-nanoESI) to couple microfluidics with mass spectrometry. The spyhole-nanoESI showed higher sensitivity compared to standard ESI and microESI from the end of the microchannel. The limits of detection (LOD) for peptide with the spyhole-nanoESI MS reached 50 pM, which was 600 times lower than that with standard ESI. The present microchip emitter allows the analysis of small volumes of samples...
March 20, 2018: Journal of the American Society for Mass Spectrometry
Jelle J F Sleeboom, Hossein Eslami Amirabadi, Poornima Nair, Cecilia M Sahlgren, Jaap M J den Toonder
Most cancer deaths are not caused by the primary tumor, but by secondary tumors formed through metastasis, a complex and poorly understood process. Cues from the tumor microenvironment, such as the biochemical composition, cellular population, extracellular matrix, and tissue (fluid) mechanics, have been indicated to play a pivotal role in the onset of metastasis. Dissecting the role of these cues from the tumor microenvironment in a controlled manner is challenging, but essential to understanding metastasis...
March 16, 2018: Disease Models & Mechanisms
Yu Jen Jan, Jie-Fu Chen, Yazhen Zhu, Yi-Tsung Lu, Szu Hao Chen, Howard Chung, Matthew Smalley, Yen-Wen Huang, Jiantong Dong, Hsiao-Hua Yu, James S Tomlinson, Shuang Hou, Vatche G Agopian, Edwin M Posadas, Hsian-Rong Tseng
Circulating tumor cells (CTCs) are cancer cells shredded from either a primary tumor or a metastatic site and circulate in the blood as the potential cellular origin of metastasis. By detecting and analyzing CTCs, we will be able to noninvasively monitor disease progression in individual cancer patients and obtain insightful information for assessing disease status, thus realizing the concept of "tumor liquid biopsy". However, it is technically challenging to identify CTCs in patient blood samples because of the extremely low abundance of CTCs among a large number of hematologic cells...
March 15, 2018: Advanced Drug Delivery Reviews
Qian Zhang, Satoshi Ishii
Quantitative polymerase chain reaction (qPCR) is now commonly used to detect fecal indicator bacteria (FIB) as well as pathogens in water samples. However, DNA loss during sample processing can cause underestimation of target genes. In this study, we created a sample process control strain (SPC) by genetically engineering a non-pathogenic, Gram-negative bacterium Pseudogulbenkiania sp. strain NH8B. The SPC strain, named NH8B-1D2, has a kanamycin-resistance gene inserted to one of the 23S rRNA genes. To specifically quantify the SPC strain, a new TaqMan qPCR assay was developed...
March 10, 2018: Water Research
Blake J Bleier, Shelley L Anna, Lynn M Walker
The goal of this work is to develop a simple microfluidic approach to characterizing liquid-liquid phase behavior in complex aqueous mixtures of organics and salts. We take advantage of the permeability of inexpensive microfluidic devices to concentrate aqueous solutions on chip. We demonstrate a technique that allows phase boundaries to be identified with high compositional resolution and small sample volumes. Droplets of single phase samples are produced on-chip and concentrated in the device beyond the phase boundary line to map system phase behavior...
March 16, 2018: Journal of Physical Chemistry. B
Guanghui Wang, Jie Tan, Minghui Tang, Changbin Zhang, Dongying Zhang, Wenbin Ji, Junhao Chen, Ho-Pui Ho, Xuping Zhang
Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform...
March 16, 2018: Lab on a Chip
Sheng Yan, Yuxing Li, Yuanqing Zhu, Minsu Liu, Qianbin Zhao, Dan Yuan, Guolin Yun, Shiwu Zhang, Weijia Wen, Shi-Yang Tang, Weihua Li
This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mould using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate (PMMA) frame and machine screws to create miniaturised, portable microfluidic valves for sequential liquid delivery and particle synthesis...
March 15, 2018: Electrophoresis
Yuanyuan Fan, Defang Dong, Qingling Li, Haibin Si, Haimeng Pei, Lu Li, Bo Tang
Single-cell analysis of bioactive molecules is an essential strategy for a better understanding of cell biology, exploring cell heterogeneity, and improvement of the ability to detect early diseases. In single-cell analysis, highly efficient single-cell manipulation techniques and high-sensitive detection schemes are in urgent need. The rapid development of fluorescent analysis techniques combined with microfluidic chips have offered a widely applicable solution. Thus, in this review, we mainly focus on the application of fluorescence methods in components analysis on microchips at a single-cell level...
March 15, 2018: Lab on a Chip
Collin D Edington, Wen Li Kelly Chen, Emily Geishecker, Timothy Kassis, Luis R Soenksen, Brij M Bhushan, Duncan Freake, Jared Kirschner, Christian Maass, Nikolaos Tsamandouras, Jorge Valdez, Christi D Cook, Tom Parent, Stephen Snyder, Jiajie Yu, Emily Suter, Michael Shockley, Jason Velazquez, Jeremy J Velazquez, Linda Stockdale, Julia P Papps, Iris Lee, Nicholas Vann, Mario Gamboa, Matthew E LaBarge, Zhe Zhong, Xin Wang, Laurie A Boyer, Douglas A Lauffenburger, Rebecca L Carrier, Catherine Communal, Steven R Tannenbaum, Cynthia L Stokes, David J Hughes, Gaurav Rohatgi, David L Trumper, Murat Cirit, Linda G Griffith
Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs...
March 14, 2018: Scientific Reports
Aynur Abdulla, Wenjia Liu, Azarmidokht Gholamipour-Shirazi, Jiahui Sun, Xianting Ding
Circulating tumor cells (CTCs) are rare cells that detach from primary or metastasis tumor and flow into the blood stream. Intact and viable tumor cells are needed for genetic characterization of CTCs, new drug development, and other research. Although separation of CTCs using spiral channel with two outlets has been reported, few literatures demonstrated simultaneous isolation of different types of CTCs from human blood using cascaded inertial focusing microfluidic channel. Herein, we introduce a cascaded microfluidic device consisting of two spiral channels and one zigzag channel designed with different fluid fields, including lift force, Dean drag force, and centrifugal force...
March 14, 2018: Analytical Chemistry
Guijun Chen, Xiaohua Liu, Sufen Li, Ming Dong, Dongyue Jiang
When a water droplet slides down a hydrophobic surface, a major energy it possesses is kinetic energy. However, people may ignore another important energy source: triboelectrification. To quantify and utilize triboelectrification energy, a phenomenon is presented in this study: one droplet slides down a tilted chip with a hydrophobic coating and patterned electrodes, triboelectrification happens and the induced charges are transferred to another horizontally placed chip with copper wires, on which another droplet is actuated by the transferred charges...
March 14, 2018: Lab on a Chip
Krishna Kant, Mohammad-Ali Shahbazi, Vivek Priy Dave, Tien Anh Ngo, Vinayaka Aaydha Chidambara, Quyen Than Linh, Dang Duong Bang, Anders Wolff
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner...
March 10, 2018: Biotechnology Advances
Lukas Valihrach, Peter Androvic, Mikael Kubista
Single-cell analysis has become an established method to study cell heterogeneity and for rare cell characterization. Despite the high cost and technical constraints, applications are increasing every year in all fields of biology. Following the trend, there is a tremendous development of tools for single-cell analysis, especially in the RNA sequencing field. Every improvement increases sensitivity and throughput. Collecting a large amount of data also stimulates the development of new approaches for bioinformatic analysis and interpretation...
March 11, 2018: International Journal of Molecular Sciences
Xiaoni Ai, Wenbo Lu, Kewu Zeng, Chun Li, Yong Jiang, Peng-Fei Tu
Emerging awareness of cardiac macrophages' role in inflammation after myocardial infarction indicates that overabundant pro-inflammatory macrophages induce accentuated myocardial injury. The investigation of macrophages-cardiomyocytes interaction and inflammation-induced dynamic damage in myocardial infarction, especially in a spatiotemporally controlled manner, remains a huge challenge. Here, we developed an in vitro model using a microfluidic co-culture system to mimic inflammatory cardiac injury. To our knowledge, on-chip pathological models focused on inflammation-induced myocardial injury have not been reported...
March 13, 2018: Analytical Chemistry
Hui Lu, Li Zhu, Chuanlong Zhang, Kexiang Chen, Yiping Cui
To solve the problem that analyte molecules are not easy to enter "hot spots" on a conventional solid SERS substrate, we developed a mixing assisted "hot spots" occupying (MAHSO) SERS strategy to improve utilization of "hot spots". Comparing with the conventional substrate, MAHSO substrate enhances the sensitivity of SERS measurement by thousands of times. The MAHSO substrate possesses excellent properties of high enhancement, high uniformity and long-term stability because MAHSO substrate is integrated inside an ultrafast microfluidic mixer...
March 13, 2018: Analytical Chemistry
Paola Occhetta, Giuseppe Isu, Marta Lemme, Chiara Conficconi, Philipp Oertle, Christian Räz, Roberta Visone, Giulia Cerino, Marija Plodinec, Marco Rasponi, Anna Marsano
In vitro cardiac models able to mimic the fibrotic process are paramount to develop an effective anti-fibrosis therapy that can regulate fibroblast behaviour upon myocardial injury. In previously developed in vitro models, typical fibrosis features were induced by using scar-like stiffness substrates and/or potent morphogen supplementation in monolayer cultures. In our model, we aimed to mimic in vitro a fibrosis-like environment by applying cyclic stretching of cardiac fibroblasts embedded in three-dimensional fibrin-hydrogels alone...
March 13, 2018: Integrative Biology: Quantitative Biosciences From Nano to Macro
Ana C Fernandes, Daria Semenova, Peter Panjan, Adama M Sesay, Krist V Gernaey, Ulrich Krühne
The limited availability of metabolite-specific sensors for continuous sampling and monitoring is one of the main bottlenecks contributing to failures in bioprocess development. Furthermore, only a limited number of approaches exist to connect currently available measurement systems with high throughput reactor units. This is especially relevant in the biocatalyst screening and characterization stage of process development. In this work, a strategy for sensor integration in microfluidic platforms is demonstrated, to address the need for rapid, cost-effective and high-throughput screening in bioprocesses...
March 6, 2018: New Biotechnology
Seol Baek, Seung-Ryong Kwon, Song Yi Yeon, Sun-Heui Yoon, Chung Mu Kang, Seok Hee Han, Dahye Lee, Taek Dong Chung
We suggest electrochemiluminescence (ECL) sensing platform driven by eco-friendly, disposable, and miniaturized reverse elec-trodialysis (RED) patches as an electric power source. The flexible RED patches composed of ion-exchange membranes (IEMs) can produce voltage required for ECL sensing by simply choosing the appropriate number of the IEMs and the ratio of salt con-centrations. We integrate the RED patch with a bipolar electrode on the microfluidic chip to demonstrate the proof-of-concept, i.e. glucose detection in the range of 0...
March 9, 2018: Analytical Chemistry
Yeonho Jo, Nakwon Choi, Hong Nam Kim, Jonghoon Choi
In this study, we demonstrate cell culture platforms that can provide a microenvironment similar to in vivo conditions so that in vivo-compatible drug testing results can be obtained from the in vitro experiments. To realize such in vivo microenvironment-mimetic platforms, different culture platforms such as a three-dimensional (3D) cell aggregate film, fluidic environment within a microfluidic system or extracellular matrix (ECM) coating were established. The tumor cell growth rate and sensitivity to doxorubicin (DOX) were studied using the glioblastoma cell line T98G...
March 8, 2018: Artificial Cells, Nanomedicine, and Biotechnology
Hui Pan, Da-Wei Wang, Qingfa Peng, Jun Ma, Xin Meng, Yaopeng Zhang, Yuning Ma, Shenmin Zhu, Di Zhang
The miniaturization of portable electronic devices has fueled the development of microsupercapacitors that hold great potential to complement or even to replace microbatteries and electrolytic capacitors. In spite of recent development taking advantage of printing and lithography, it remains a great challenge to attain high energy density without sacrificing power density. Herein, a new protocol mimicking the spider's spinning process is developed to create highly oriented microfibers from graphene-based composite via a purpose-designed microfluidic chip...
March 7, 2018: ACS Applied Materials & Interfaces
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"