Read by QxMD icon Read

regenerative medicine with stem cells

Juan Pablo Acevedo, Ioannis Angelopoulos, Danny van Noort, Maroun Khoury
Microfabrication and microfluidics contribute to the research of cellular functions of cells and their interaction with their environment. Previously, it has been shown that microfluidics can contribute to the isolation, selection, characterization and migration of cells. This review aims to provide stem cell researchers with a toolkit of microtechnology (mT) instruments for elucidating complex stem cells functions which are challenging to decipher with traditional assays and animal models. These microdevices are able to investigate about the differentiation and niche interaction, stem cells transcriptomics, therapeutic functions and the capture of their secreted microvesicles...
March 20, 2018: Regenerative Medicine
Lauren A Jevons, Franchesca D Houghton, Rahul S Tare
The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics...
March 20, 2018: Regenerative Medicine
Klemen Čamernik, Ariana Barlič, Matej Drobnič, Janja Marc, Matjaž Jeras, Janja Zupan
The musculoskeletal system includes tissues that have remarkable regenerative capabilities. Bone and muscle sustain micro-damage throughout the lifetime, yet they continue to provide the body with the support that is needed for everyday activities. Our current understanding is that the regenerative capacity of the musculoskeletal system can be attributed to the mesenchymal stem/ stromal cells (MSCs) that reside within its different anatomical compartments. These MSCs can replenish various tissues with progenitor cells to form functional cells, such as osteoblasts, chondrocytes, myocytes, and others...
March 20, 2018: Stem Cell Reviews
Muhammad Fuad Hilmi Yusof, Wafa' Zahari, Siti Nurnasihah Md Hashim, Zul Faizuddin Osman, Hamshawagini Chandra, Thirumulu Ponnuraj Kannan, Khairul Bariah Ahmad Amin Noordin, Ahmad Azlina
Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage...
January 2018: Journal of Oral Biology and Craniofacial Research
Polina Zjablovskaja, Petr Danek, Miroslava Kardosova, Meritxell Alberich-Jorda
Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers...
February 21, 2018: Journal of Visualized Experiments: JoVE
Ling Ling Liau, Suzana Makpol, Abdul Ghani Nur Azurah, Kien Hui Chua
Currently, orthotopic liver transplantation is the gold standard therapy for liver failure. However, it is limited by the insufficient organ donor and risk of immune rejection. Stem cell therapy is a promising alternative treatment for liver failure. One of the most ideal sources of stem cells for regenerative medicine is adipose-derived stem cells (ADSCs). In this study, primary ADSCs seeded on cell culture insert were indirectly co-cultured with injured HepG2 to elucidate the role of ADSCs in promoting the recovery of injured HepG2 in non-contact manner...
March 16, 2018: Cytotechnology
Anny Waloski Robert, Addeli Bez Batti Angulski, Lucia Spangenberg, Patrícia Shigunov, Isabela Tiemy Pereira, Paulo Sergio Loiacono Bettes, Hugo Naya, Alejandro Correa, Bruno Dallagiovanna, Marco Augusto Stimamiglio
Mesenchymal stem cells (MSCs) have been widely studied with regard to their potential use in cell therapy protocols and regenerative medicine. However, a better comprehension about the factors and molecular mechanisms driving cell differentiation is now mandatory to improve our chance to manipulate MSC behavior and to benefit future applications. In this work, we aimed to study gene regulatory networks at an early step of osteogenic differentiation. Therefore, we analyzed both the total mRNA and the mRNA fraction associated with polysomes on human adipose tissue-derived stem cells (hASCs) at 24 h of osteogenesis induction...
March 16, 2018: Scientific Reports
Bingbo Zhang, Wei Yan, Yanjing Zhu, Weitao Yang, Wenjun Le, Bingdi Chen, Rongrong Zhu, Liming Cheng
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy...
March 15, 2018: Advanced Materials
Yan Li, Dewen Ye, Mingxi Li, Ming Ma, Ning Gu
The paper provides a brief overview of the use of iron oxide nanoparticles (IONPs) in the areas of bone regenerative medicine. Reconstruction of bone defects caused by trauma, non-union, and bone tumour excision still faces many challenges despite the intense investigations and advancement in bone tissue engineering and bone regeneration over the past decades. IONPs have promising prospects in this field due to their controlled responsive characteristics in specific external magnetic fields and have been of great interest during the last few years...
March 14, 2018: Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry
Maria E Piroli, Ehsan Jabbarzadeh
Human stem cells hold significant potential for the treatment of various diseases. However, their use as a therapy is hampered because of limited understanding of the mechanisms by which they respond to environmental stimuli. Efforts to understand extracellular biophysical cues have demonstrated the critical roles of geometrical and mechanical signals in determining the fate of stem cells. The goal of this study was to explore the interplay between cell polarity and matrix stiffness in stem cell lineage specification...
March 14, 2018: Annals of Biomedical Engineering
John Russell, Emily Lodge, Cynthia Andoniadou
<br>As a central regulator of major physiological processes, the pituitary gland is a highly dynamic organ, capable of responding to hormonal demand and hypothalamic influence, through adapting secretion as well as remodelling cell numbers among its seven populations of differentiated cells. Stem cells of the pituitary have been shown to actively generate new cells during postnatal development but remain mostly quiescent during adulthood, where they persist as a long-lived population. Despite a significant body of research characterising attributes of anterior pituitary stem cells, the regulation of this population is poorly understood...
March 14, 2018: Neuroendocrinology
Heiko Lemcke, Natalia Voronina, Gustav Steinhoff, Robert David
During the past decades, stem cell-based therapy has acquired a promising role in regenerative medicine. The application of novel cell therapeutics for the treatment of cardiovascular diseases could potentially achieve the ambitious aim of effective cardiac regeneration. Despite the highly positive results from preclinical studies, data from phase I/II clinical trials are inconsistent and the improvement of cardiac remodeling and heart performance was found to be quite limited. The major issues which cardiac stem cell therapy is facing include inefficient cell delivery to the site of injury, accompanied by low cell retention and weak effectiveness of remaining stem cells in tissue regeneration...
2018: Stem Cells International
Przemysław Janas, Iwona Kucybała, Małgorzata Radoń-Pokracka, Hubert Huras
Telocytes are emerging cell population localized in the stroma of numerous organs, characterized by a distinctive morphology - small cell body with very long, slender prolongations, termed telopodes. Those cells can be found in the whole female reproductive system: in the vagina, uterus, oviducts and ovaries, mammary glands and also in the placenta. In our review, we aim at complete and transparent revision of the current knowledge of telocytes' localization and function, enriched by the analysis of the possible future direction of development of their clinical applications...
March 13, 2018: Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University
Huihui Wang, Qi Zhong, Tianshu Yang, Ying Qi, Mengchen Fu, Xi Yang, Lu Qiao, Qi Ling, Shangfeng Liu, Yumei Zhao
Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue‑derived mesenchymal stem cells (MSCs). These cells possess a capacity for self‑renewal, multilineage differentiation potential and immunomodulatory functions. Previous studies have reported that DPSCs and SHED may be beneficial in regenerative treatments and immunotherapy. The substantial expansion of cells in vitro is a prerequisite to obtaining adequate cell numbers required for cell‑based therapy...
March 9, 2018: Molecular Medicine Reports
Ashfaqul Hoque, Priyadharshini Sivakumaran, Simon T Bond, Naomi X Y Ling, Anne M Kong, John W Scott, Nadeeka Bandara, Damián Hernández, Guei-Sheung Liu, Raymond C B Wong, Michael T Ryan, Derek J Hausenloy, Bruce E Kemp, Jonathan S Oakhill, Brian G Drew, Alice Pébay, Shiang Y Lim
Human induced pluripotent stem cells (iPSCs) are a valuable tool for studying the cardiac developmental process in vitro, and cardiomyocytes derived from iPSCs are a putative cell source for personalized medicine. Changes in mitochondrial morphology have been shown to occur during cellular reprogramming and pluripotent stem cell differentiation. However, the relationships between mitochondrial dynamics and cardiac mesoderm commitment of iPSCs remain unclear. Here we demonstrate that changes in mitochondrial morphology from a small granular fragmented phenotype in pluripotent stem cells to a filamentous reticular elongated network in differentiated cardiomyocytes are required for cardiac mesodermal differentiation...
December 2018: Cell Death Discovery
Marcus S Niepel, Fadi Almouhanna, Bhavya K Ekambaram, Matthias Menzel, Andreas Heilmann, Thomas Groth
BACKGROUND: Cells possess a specialized machinery through which they can sense physical as well as chemical alterations in their surrounding microenvironment that affect their cellular behavior. AIM: In this study, we aim to establish a polyelectrolyte multilayer system of 24 layers of poly-l-lysine and hyaluronic acid to control stem cell response after chemical cross-linking. METHODS AND RESULTS: The multilayer build-up process is monitored using different methods, which show that the studied polyelectrolyte multilayer system grows exponentially following the islands and islets theory...
February 1, 2018: International Journal of Artificial Organs
A Srivastava, S Singh, A Pandey, D Kumar, C S Rajpurohit, V K Khanna, A B Pant
The secretome-mediated responses over cellular physiology are well documented. Stem cells have been ruling the field of secretomics and its role in regenerative medicine since the past few years. However, the mechanistic aspects of secretome-mediated responses and the role of other cells in this area remain somewhat elusive. Here, we investigate the effects of secretome-enriched conditioned medium (CM) of neuronally differentiated PC12 cells on the neuronal differentiation of human mesenchymal stem cells (hMSCs)...
March 12, 2018: Molecular Neurobiology
Tingting Ai, Jieni Zhang, Xuedong Wang, Xiaowen Zheng, Xueyan Qin, Qian Zhang, Weiran Li, Wei Hu, Jiuxiang Lin, Feng Chen
Among the various sources of human autologous stem cells, stem cells isolated from dental tissues exhibit excellent properties in tissue engineering and regenerative medicine. However, the distinct potential of these odontogenic cell lines remains unclear. In this study, we analyzed DNA methylation patterns to determine whether specific differences existed among three different odontogenic cell types. Using the HumanMethylation450 Beadchip, the whole genomes of human dental pulp stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), and dental follicle progenitor cells (DFPCs) were compared...
2018: Signal Transduction and Targeted Therapy
Yu Bin Lee, Eun Mi Kim, Hayeon Byun, Hyung-Kwan Chang, Kwanghee Jeong, Zachary M Aman, Yu Suk Choi, Jungyul Park, Heungsoo Shin
Numerous methods have been reported for the fabrication of 3D multi-cellular spheroids and their use in stem cell culture. Current methods typically relying on the self-assembly of trypsinized, suspended stem cells, however, show limitations with respect to cell viability, throughput, and accurate recapitulation of the natural microenvironment. In this study, we developed a new system for engineering cell spheroids by self-assembly of micro-scale monolayer of stem cells. We prepared synthetic hydrogels with the surface of chemically formed micropatterns (squares/circles with width/diameter of 200 μm) on which mesenchymal stem cells isolated from human nasal turbinate tissue (hTMSCs) were selectively attached and formed a monolayer...
March 1, 2018: Biomaterials
Somayeh Keshtkar, Negar Azarpira, Mohammad Hossein Ghahremani
Mesenchymal stem cells (MSCs) are multipotent stem cells that have gained significant attention in the field of regenerative medicine. The differentiation potential along with paracrine properties of MSCs have made them a key option for tissue repair. The paracrine functions of MSCs are applied through secreting soluble factors and releasing extracellular vesicles like exosomes and microvesicles. Extracellular vesicles are predominantly endosomal in origin and contain a cargo of miRNA, mRNA, and proteins that are transferred from their original cells to target cells...
March 9, 2018: Stem Cell Research & Therapy
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"