Read by QxMD icon Read

tracheal scaffold

Douglas R Marques, Luís A L Dos Santos, Marie A O'Brien, Sarah H Cartmell, Julie E Gough
The polymeric blend of poly (lactic-co-glycolic acid) (PLGA) and polyisoprene (PI) has recently been explored for application as stents for tracheal stenosis and spring for the treatment of craniosynostosis. From the positive results presented in other biomedical applications comes the possibility of investigating the application of this material as scaffold for tissue engineering (TE), acquiring a deeper knowledge about the polymeric blend by exploring a new processing technique while attending to the most fundamental demands of TE scaffolds...
October 6, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Margot Den Hondt, Bart M Vanaudenaerde, Erik K Verbeken, Jan J Vranckx
BACKGROUND: Successful trachea transplantation comprises the use of biocompatible constructs with little immune-reactivity, submucosal revascularization and creation of an epithelial covering. Allogenic chondrocytes might be protected from an overt immune-response due to physical isolation. Our aim was to evaluate in-vivo biocompatibility of allotracheae, stripped of their highly-immunogenic inner lining. Secondly, we established whether these constructs might serve as suitable scaffolds for autologous epithelial grafting...
October 4, 2016: Acta Chirurgica Belgica
Farzaneh Safshekan, Mohammad Tafazzoli-Shadpour, Majid Abdouss, Mohammad B Shadmehr
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle and connective tissue, based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30% and 40% for smooth muscle and connective tissue)...
September 12, 2016: Journal of Biomechanical Engineering
Liping Zhao, Sumati Sundaram, Andrew V Le, Angela H Huang, Jiasheng Zhang, Go Hatachi, Arkadi Beloiartsev, Michael G Caty, Tai Yi, Katherine Leiby, Ashley Gard, Mehmet H Kural, Liqiong Gui, Kevin A Rocco, Amogh Sivarapatna, Elizabeth Calle, Allison Greaney, Luca Urbani, Panagiotis Maghsoudlou, Alan Burns, Paolo DeCoppi, Laura E Niklason
Here we report the creation of a novel tracheal construct in the form of an engineered, acellular tissue-stent biocomposite trachea (TSBT). Allogeneic or xenogeneic smooth muscle cells are cultured on polyglycolic acid polymer-metal stent scaffold leading to the formation of a tissue comprising cells, their deposited collagenous matrix, and the stent material. Thorough decellularization then produces a final acellular tubular construct. Engineered TSBTs were tested as end-to-end tracheal replacements in 11 rats and 3 nonhuman primates...
September 2016: Tissue Engineering. Part A
P Lange, H Shah, M Birchall, P Sibbons, T Ansari
There is a clinical need to provide replacement tracheal tissue for the pediatric population affected by congenital defects, as current surgical solutions are not universally applicable. A potential solution is to use tissue engineered scaffold as the framework for regenerating autologous tissue. Rabbit trachea were used and different detergents (Triton x-100 and sodium deoxycholate) and enzymes (DNAse/RNAse) investigated to create a decellularization protocol. Each reagent was initially tested individually and the outcome used to design a combined protocol...
July 15, 2016: Journal of Biomedical Materials Research. Part B, Applied Biomaterials
Lucia Battistella, Giuseppe Marulli, Giovanni Maria Comacchio, Marco Mammana, Guido Di Gregorio, Federico Rea
Acquired nonmalignant tracheoesophageal fistula (TEF) is a rare condition that requires proper treatment. We present the case of a 55-year-old woman with a 4.5-cm recurrent TEF, which had developed after an attempted surgical repair. After closure of the esophageal defect in two layers, a tracheoplasty technique was used to repair the tracheal membranous wall with a synthetic bioabsorbable patch (Gore Bio-A tissue reinforcement) covered with an intercostal muscle flap. The use of Gore Bio-A tissue reinforcement is an innovative and effective method to close a wide tracheal defect while achieving a scaffold for epithelial colonization...
May 2016: Annals of Thoracic Surgery
Lindsey M Ott, Taylor A Zabel, Natalie K Walker, Ashley L Farris, Jason T Chakroff, Devan G Ohst, Jed K Johnson, Steven H Gehrke, Robert A Weatherly, Michael S Detamore
Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway...
April 2016: Biomedical Materials
Fei Sun, Yuan Jiang, Yanfei Xu, Hongcan Shi, Siquan Zhang, Xingchen Liu, Shu Pan, Gang Ye, Weidong Zhang, Fangbiao Zhang, Chonghao Zhong
Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples...
2016: Scientific Reports
Christopher Johnson, Priyanka Sheshadri, Jessica M Ketchum, Lokesh K Narayanan, Paul M Weinberger, Rohan A Shirwaiker
Infection or damage to the trachea, a thin walled and cartilage reinforced conduit that connects the pharynx and larynx to the lungs, leads to serious respiratory medical conditions which can often prove fatal. Current clinical strategies for complex tracheal reconstruction are of limited availability and efficacy, but tissue engineering and regenerative medicine approaches may provide viable alternatives. In this study, we have developed a new "hybrid graft" approach that utilizes decellularized tracheal tissue along with a resorbable polymer scaffold, and holds promise for potential clinical applications...
June 2016: Journal of the Mechanical Behavior of Biomedical Materials
Renata Kelly da Palma, Paula Naomi Nonaka, Noelia Campillo, Juan J Uriarte, Jessica Julioti Urbano, Daniel Navajas, Ramon Farré, Luis V F Oliveira
Bioengineering of functional lung tissue by using whole lung scaffolds has been proposed as a potential alternative for patients awaiting lung transplant. Previous studies have demonstrated that vascular resistance (Rv) could be altered to optimize the process of obtaining suitable lung scaffolds. Therefore, this work was aimed at determining how lung inflation (tracheal pressure) and perfusion (pulmonary arterial pressure) affect vascular resistance. This study was carried out using the lungs excised from 5 healthy male Sprague-Dawley rats...
May 3, 2016: Journal of Biomechanics
Shih-Han Hung, Chin-Hui Su, Sey-En Lin, How Tseng
OBJECTIVES/HYPOTHESIS: Ideal methods for reconstructing the tracheal structure and restoring tracheal function following damage to the trachea or removal of the trachea have not been developed. The purpose of this study is to evaluate the feasibility of using a whole segment decellularized tracheal scaffold to reconstruct the trachea. STUDY DESIGN: Prospective experimental design. SETTING: In vivo rabbit model. METHODS: Trachea scaffolds were created using our previously developed freeze-dry-sonication-sodium dodecyl sulfate (SDS), [FDSS] decellularization process...
March 1, 2016: Laryngoscope
Stephanie L Bogan, Gui Zhen Teoh, Martin A Birchall
An ideal tracheal scaffold must withstand luminal collapse yet be flexible, have a sufficient degree of porosity to permit vascular and cellular ingrowth, but also be airtight and must facilitate growth of functional airway epithelium to avoid infection and aid in mucocilliary clearance. Finally, the scaffold must also be biocompatible to avoid implant rejection. Over the last 40 years, efforts to design and manufacture the airway have been undertaken worldwide but success has been limited and far apart. As a result, tracheal resection with primary repair remains the Gold Standard of care for patients presenting with airway disorders and malignancies...
July 2016: Journal of Cellular Biochemistry
Colin R Butler, Robert E Hynds, Kate H C Gowers, Dani Do Hyang Lee, James M Brown, Claire Crowley, Vitor H Teixeira, Claire M Smith, Luca Urbani, Nicholas J Hamilton, Ricky M Thakrar, Helen L Booth, Martin A Birchall, Paolo De Coppi, Adam Giangreco, Christopher O'Callaghan, Sam M Janes
RATIONALE: Stem cell-based tracheal replacement represents an emerging therapeutic option for patients with otherwise untreatable airway diseases including long-segment congenital tracheal stenosis and upper airway tumors. Clinical experience demonstrates that restoration of mucociliary clearance in the lungs after transplantation of tissue-engineered grafts is critical, with preclinical studies showing that seeding scaffolds with autologous mucosa improves regeneration. High epithelial cell-seeding densities are required in regenerative medicine, and existing techniques are inadequate to achieve coverage of clinically suitable grafts...
July 15, 2016: American Journal of Respiratory and Critical Care Medicine
Elizabeth G Mansfield, Vaughn K Greene, Debra T Auguste
UNLABELLED: Tracheal damage, abnormality or absence can result from the growth of tumors or from Congenital High Airway Obstruction Syndrome. No optimal or routine treatment has been established for tracheal repair, despite numerous attempts with natural and artificial prostheses. The fetal trachea is comprised of cartilaginous rings connected by an elastomeric tissue. In an effort to design an engineered trachea replacement, we have synthesized 2-hydroxyethyl methacrylate hydrogels with moduli of 67 ± 3...
March 2016: Acta Biomaterialia
Christopher Mahoney, Dawn Conklin, Jenora Waterman, Jagannathan Sankar, Narayan Bhattarai
Synthetic grafts comprised of a porous scaffold in the size and shape of the natural tracheobronchial tree, and autologous stem cells have shown promise in the ability to restore the structure and function of a severely damaged airway system. For this specific application, the selected scaffold material should be biocompatible, elicit limited cytotoxicity, and exhibit sufficient mechanical properties. In this research, we developed composite nanofibers of polycaprolactone (PCL) and depolymerized chitosan using the electrospinning technique and assessed the properties of the fibers for its potential use as a scaffold for regenerating tracheal tissue...
2016: Journal of Biomaterials Science. Polymer Edition
Doh Young Lee, Su A Park, Sang Jin Lee, Tae Ho Kim, Se Heang Oh, Jin Ho Lee, Seong Keun Kwon
OBJECTIVES/HYPOTHESIS: Three-dimensional (3D) printed scaffold for tracheal reconstruction can substitute the conventional treatment of tracheal stenosis. This study investigated the survival outcomes of segmental tracheal reconstruction using 3D printed polycaprolactone (PCL) scaffold with or without asymmetrically porous membrane in rabbit animal model. STUDY DESIGN: Animal study. METHODS: Six mature New Zealand white rabbits were categorized into two groups (three animals for each) according to the procedures they received: tracheal reconstruction using 3D printed PCL scaffold without asymmetrically porous membrane (group 1) versus with asymmetrically porous membrane (group 2)...
September 2016: Laryngoscope
Elizabeth S Clark, Cameron Best, Ekene Onwuka, Tadahisa Sugiura, Nathan Mahler, Brad Bolon, Andrew Niehaus, Iyore James, Narutoshi Hibino, Toshiharu Shinoka, Jed Johnson, Christopher K Breuer
BACKGROUND: Surgical management of long segment tracheal disease is limited by a paucity of donor tissue and poor performance of synthetic materials. A potential solution is the development of a tissue-engineered tracheal graft (TETG) which promises an autologous airway conduit with growth capacity. METHODS: We created a TETG by vacuum seeding bone marrow-derived mononuclear cells (BM-MNCs) on a polymeric nanofiber scaffold. First, we evaluated the role of scaffold porosity on cell seeding efficiency in vitro...
January 2016: Journal of Pediatric Surgery
Todd A Goldstein, Benjamin D Smith, David Zeltsman, Daniel Grande, Lee P Smith
OBJECTIVE: To use 3-dimensional (3D) printing and tissue engineering to create a graft for laryngotracheal reconstruction (LTR). STUDY DESIGN: In vitro and in vivo pilot animal study. SETTING: Large tertiary care academic medical center. SUBJECTS AND METHODS: A 3D computer model of an anterior LTR graft was designed. That design was printed with polylactic acid on a commercially available 3D printer. The scaffolds were seeded with mature chondrocytes and collagen gel and cultured in vitro for up to 3 weeks...
December 2015: Otolaryngology—Head and Neck Surgery
Yuta Nakaegawa, Ryosuke Nakamura, Yasuhiro Tada, Yukio Nomoto, Mitsuyoshi Imaizumi, Ryo Suzuki, Tatsuo Nakamura, Koichi Omori
OBJECTIVE: We developed an in situ regeneration-inducible artificial trachea composed of a porcine collagen sponge and polypropylene framework and used it for tracheal reconstruction. In the present study, collagen sponges with different structures were prepared from various concentrations of collagen solutions, and their effect on the regeneration of tracheal epithelium was examined. METHODS: Collagen sponges were prepared from type I and III collagen solutions...
February 2016: Annals of Otology, Rhinology, and Laryngology
J C R Wormald, J M Fishman, S Juniat, N Tolley, M A Birchall
BACKGROUND: Tissue engineering using biocompatible scaffolds, with or without cells, can permit surgeons to restore structure and function following tissue resection or in cases of congenital abnormality. Tracheal regeneration has emerged as a spearhead application of these technologies, whilst regenerative therapies are now being developed to treat most other diseases within otolaryngology. METHODS AND RESULTS: A systematic review of the literature was performed using Ovid Medline and Ovid Embase, from database inception to 15 November 2014...
August 2015: Journal of Laryngology and Otology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"