Read by QxMD icon Read

PARP AND benzamide

Marie-France Langelier, Levani Zandarashvili, Pedro M Aguiar, Ben E Black, John M Pascal
PARP-1 cleaves NAD+ and transfers the resulting ADP-ribose moiety onto target proteins and onto subsequent polymers of ADP-ribose. An allosteric network connects PARP-1 multi-domain detection of DNA damage to catalytic domain structural changes that relieve catalytic autoinhibition; however, the mechanism of autoinhibition is undefined. Here, we show using the non-hydrolyzable NAD+ analog benzamide adenine dinucleotide (BAD) that PARP-1 autoinhibition results from a selective block on NAD+ binding. Following DNA damage detection, BAD binding to the catalytic domain leads to changes in PARP-1 dynamics at distant DNA-binding surfaces, resulting in increased affinity for DNA damage, and providing direct evidence of reverse allostery...
February 27, 2018: Nature Communications
Sun You Park, Yong Jin Oh, Yunmee Lho, Ju Hui Jeong, Kwang-Hyeon Liu, Jaeyoung Song, Soong-Hyun Kim, Eunyoung Ha, Young Ho Seo
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors. In particular, compound 30f shows a significant Hsp90α inhibitory activity with IC50 value of 5.3 nM and an excellent growth inhibition with GI50 value of 0.42 μM against non-small cell lung cancer cells, H1975...
January 1, 2018: European Journal of Medicinal Chemistry
Yin Li, Yan Wang, Yong Zhou, Jie Li, Kai Chen, Leisi Zhang, Manman Deng, Suqi Deng, Peng Li, Bing Xu
BACKGROUND: Many conventional chemotherapeutic drugs are known to be involved in DNA damage, thus ultimately leading to apoptosis of leukemic cells. However, they fail to completely eliminate leukemia stem cells (LSCs) due to their higher DNA repair capacity of cancer stem cells than that of bulk cancer cells, which becomes the root of drug resistance and leukemia recurrence. A new strategy to eliminate LSCs in acute myeloid leukemia (AML) is therefore urgently needed. RESULTS: We report that a low-dose chidamide, a novel orally active benzamide-type histone deacetylase (HDAC) inhibitor, which selectively targets HDACs 1, 2, 3, and 10, could enhance the cytotoxicity of DNA-damaging agents (daunorubicin, idarubicin, and cytarabine) in CD34(+)CD38(-) KG1α cells, CD34(+)CD38(-) Kasumi cells, and primary refractory or relapsed AML CD34(+) cells, reflected by the inhibition of cell proliferation, induction of apoptosis, and increase of cell cycle arrest in vitro...
2017: Clinical Epigenetics
Manish Kesherwani, Sriram Raghavan, Krishnasamy Gunasekaran, Devadasan Velmurugan
Nicotinamide Phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the biosynthesis of NAD. Cancer cells have elevated poly [ADP-Ribose] polymerase 1 (PARP) activity as well as the immense necessity of ATP: thereby consuming NAD at a higher rate than normal tissues. The perturbation of these intracellular processes is more sensitive and highly dependent on NAMPT to maintain the required NAD levels. Functional inhibition of NAMPT is, therefore, a promising drug target in therapeutic oncology. In this study, the importance of intermolecular contacts was realized based on contact occupancy and favorable energetic from molecular dynamic simulation to discern non-critical contacts of four different classes of potential NAMPT inhibitor bound complexes...
May 17, 2017: Journal of Biomolecular Structure & Dynamics
Yu-wen Yin, Ming Ji, Ran Cao, Xiao-guang Chen, Bai-ling Xu
Poly(ADP-ribose)polymerase-1 (PARP-1) plays a significant role in the DNA repair process by catalyzing the transfer of ADP-ribose from NAD+ to its receptors. It is a promising anticancer drug target and many PARP-1 inhibitors have been developed and used in the clinical trial. In this work, a series of 3-(2-oxo-2-substituted acetamido)benzamides have been synthesized and their inhibitory activities against PARP-1 were evaluated. Of all the tested compounds, six compounds displayed inhibitory activities with IC50 values ranging from 0...
June 2015: Yao Xue Xue Bao, Acta Pharmaceutica Sinica
V V Pushkarev, D V Starenki, V M Pushkarev, O I Kovzun, M D Tronko
Anticancer drug paclitaxel (Ptx) effect on biochemical mechanisms, regulating apoptosis in anaplas- tic thyroid carcinoma cells, was studied. It was shown that in addition to apoptotic cell death, Ptx induces signaling cascades that ensure cell survival. Paclitaxel-induced activation of nuclear factor kappa B (NF-κB) leads to an increase of some antiapoptotic proteins expression such as survivin, cIAP, XIAP. A novel NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), was found to enhance cytotoxic effect of Ptx in anaplastic thyroid carcinoma cells...
May 2015: Ukrainian Biochemical Journal
Yi-Min Liu, Hsueh-Yun Lee, Mei-Jung Lai, Shiow-Lin Pan, Hsiang-Ling Huang, Fei-Chiao Kuo, Mei-Chuan Chen, Jing-Ping Liou
We synthesized a series of pyrimidinedione derivatives and evaluated their activities. The results indicate that compound 6, 4-[5-fluoro-2,6-dioxo-3-(tetrahydro-furan-2-yl)-3,6-dihydro-2H-pyrimidin-1-ylmethyl]-N-hydroxy-benzamide, exhibits potent antiproliferative activity, apoptosis induction with cleavage of caspase and PARP, and enhanced tendency to inhibit HDAC6 (IC50 = 12.4 nM) activity over HDAC1 (IC50 = 1710 nM) and HDAC2 (IC50 = 5500 nM). Compound 6 also inhibits tumor growth and is less toxic than parent 4 in vivo...
October 28, 2015: Organic & Biomolecular Chemistry
Yin Li, Kai Chen, Yong Zhou, Yiren Xiao, Manman Deng, Zhiwu Jiang, Wei Ye, Xiangmeng Wang, Xinru Wei, Jie Li, Jiabao Liang, Zhongxin Zheng, Yao Yao, Weiguang Wang, Peng Li, Bing Xu
Leukemia stem cells (LSCs) are responsible for treatment failure and relapse in acute myeloid leukemia (AML). Therefore, development of novel LSCs-targeting therapeutic strategies is of crucial clinical importance to improve the treatment outcomes of AML. Histone deacetylase (HDAC) inhibitors have shown potent and specific anticancer stem cell activities in preclinical studies. Chidamide, a novel benzamide-type selectively HDAC inhibitor, has been reported to induce G1 arrest and apoptosis in the relatively mature progenitor population, whereas its effect on primitive LSCs has not been clarified...
2015: Current Cancer Drug Targets
Torun Ekblad, Anders E G Lindgren, C David Andersson, Rémi Caraballo, Ann-Gerd Thorsell, Tobias Karlberg, Sara Spjut, Anna Linusson, Herwig Schüler, Mikael Elofsson
Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation, transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predominantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the mono-ADP-ribosyltransferases with low potency...
May 5, 2015: European Journal of Medicinal Chemistry
Melahat Dönmez, Bülent Uysal, Yavuz Poyrazoğlu, Yeşim E R Öztas, Türker Türker, Ümit Kaldirim, Ahmet Korkmaz
BACKGROUND/AIM: Acetaminophen (APAP) overdose results in severe liver damage that may develop into acute liver failure. Recent studies have demonstrated that inhibition of poly(ADP-ribose) polymerase (PARP) decreases tissue necrosis and inflammation. We evaluated the efficacy of 3-aminobenzamide (3-AB), a PARP inhibitor, in a rodent model of APAP-induced hepatotoxicity. MATERIALS AND METHODS: Twenty-four Sprague-Dawley rats were divided equally into 3 experimental groups: sham group, APAP group, and APAP + 3-AB group...
2015: Turkish Journal of Medical Sciences
Pablo Iglesias, Jose A Costoya
ADP-ribosylation or PARsylation is one of the most abundant modifications of proteins and DNA. Although the usual context for PARsylation involves the detection and repair of DNA damage in the cell, poly(ADP-ribose) polymerases are known to regulate a number of biological processes besides maintaining genome integrity. One of these processes is the assembly and maintenance of the mitotic spindle where the presence of PARP-1 and tankyrase 1 (TNKS1), two of the best-characterized members of the PARP superfamily, is of critical importance...
2014: Current Topics in Medicinal Chemistry
Zhiyong Yang, Li Li, Lijuan Chen, Weiwei Yuan, Liming Dong, Yushun Zhang, Heshui Wu, Chunyou Wang
The high-mobility group box protein 1 (HMGB1) is increasingly recognized as an important inflammatory mediator. In some cases, the release of HMGB1 is regulated by poly(ADP-ribose) polymerase-1 (PARP-1), but the mechanism is still unclear. In this study, we report that PARP-1 activation contributes to LPS-induced PARylation of HMGB1, but the PARylation of HMGB1 is insufficient to direct its migration from the nucleus to the cytoplasm; PARP-1 regulates the translocation of HMGB1 to the cytoplasm through upregulating the acetylation of HMGB1...
December 15, 2014: Journal of Immunology: Official Journal of the American Association of Immunologists
Hui Wang, Changqing Lu, Qing Li, Jun Xie, Tongbing Chen, Yan Tan, Changping Wu, Jingting Jiang
This study was to investigate the mechanism and role of Kif4A in doxorubicin-induced apoptosis in breast cancer. Using two human breast cancer cell lines MCF-7 (with wild-type p53) and MDA-MB-231 (with mutant p53), we quantitated the expression levels of kinesin super-family protein 4A (Kif4A) and poly (ADP-ribose) Polymerase-1 (PARP-1) by Western blot after doxorubicin treatment and examined the apoptosis by flow cytometry after treatment with doxorubicin and PARP-1 inhibitor, 3-Aminobenzamide (3-ABA). Our results showed that doxorubicin treatment could induce the apoptosis of MCF-7 and MDA-MB-231 cells, the down-regulation of Kif4A and upregulation of poly(ADP-ribose) (PAR)...
November 2014: Molecules and Cells
L Yadav, S Khan, K Shekh, G B Jena
Testing new chemical entities for genotoxicity is an integral part of the preclinical drug-development process. Lowering the detection limit and enhancing the sensitivity of genotoxicity assays is required, as the standard test-battery fails to detect some carcinogens (non-genotoxic) and weak genotoxins. One of the mechanisms that affect the detection of weak genotoxins is related with the DNA-repair efficiency of the cell system used. In the present study, 3-aminobenzamide (3-AB, 30 mg/kg body-weight), a poly(ADP-ribose)polymerase inhibitor, was used to evaluate the DNA-damaging potential of zidovudine (AZT, 400 mg/kg bw), doxorubicin (DOX, 5 mg/kg bw) and cyclophosphamide (CP, 50 mg/kg bw, as a positive control) and sucrose (SUC, 3 g/kg bw, as a negative control) in Swiss female mice...
August 2014: Mutation Research. Genetic Toxicology and Environmental Mutagenesis
Christopher J Lord, Andrew N J Tutt, Alan Ashworth
The genetic concept of synthetic lethality, in which the combination or synthesis of mutations in multiple genes results in cell death, provides a framework to design novel therapeutic approaches to cancer. Already there are promising indications, from clinical trials exploiting this concept by using poly(ADP-ribose) polymerase (PARP) inhibitors in patients with germline BRCA1 or BRCA2 gene mutations, that this approach could be beneficial. We discuss the biological rationale for BRCA-PARP synthetic lethality, how the synthetic lethal approach is being assessed in the clinic, and how mechanisms of resistance are starting to be dissected...
2015: Annual Review of Medicine
Hui Wang, Changqing Lu, Yan Tan, Jun Xie, Jingting Jiang
To study the effects of adriamycin on the expression of BRCA1 and PARP-1 in BRCA1 wild-type MCF-7 cells. We used Western blotting to detect BRCA1 and PARP-1 levels in MCF-7 cells treated with adriamycin, and used flow cytometry to detect apoptotic MCF-7 cells. Results showed that adriamycin can increase PARP-1 activation in a dose- and time-dependent manner. BRCA1 levels were also increased upon treatment with a high dose of adriamycin, but gradually decreased over time. Treatment of MCF-7 cells with 3-ABA inhibited PARP-1 activity, but had no effect on BRCA1 levels...
2014: International Journal of Clinical and Experimental Pathology
Amir Sonnenblick, Evandro de Azambuja, Hatem A Azim, Martine Piccart
Inhibition of poly(ADP-ribose) polymerase (PARP) enzymes is a potential synthetic lethal therapeutic strategy in cancers harbouring specific DNA-repair defects, including those arising in carriers of BRCA1 or BRCA2 mutations. Since the development of first-generation PARP inhibitors more than a decade ago, numerous clinical trials have been performed to validate their safety and efficacy, bringing us to the stage at which adjuvant therapy with PARP inhibitors is now being considered as a viable treatment option for patients with breast cancer...
January 2015: Nature Reviews. Clinical Oncology
Vasili Stegajev, Vesa-Petteri Kouri, Abdelhakim Salem, Stanislav Rozov, Holger Stark, Dan C E Nordström, Yrjö T Konttinen
Apoptosis is involved in the pathogenesis of Sjögren's syndrome (SS), an autoimmune disease affecting exocrine glands. Our recent studies revealed diminished histamine H4 receptor (H₄R) expression and impaired histamine transport in the salivary gland epithelial cells in SS. The aim was now to test if nanomolar histamine and high-affinity H₄R signaling affect apoptosis of human salivary gland epithelial cell. Simian virus 40-immortalized acinar NS-SV-AC cells were cultured in serum-free keratinocyte medium ± histamine H₄R agonist HST-10...
December 2014: Apoptosis: An International Journal on Programmed Cell Death
Ercan Malkoc, Bilal Fırat Alp, Zafer Demirer, Ali Guragac, Furkan Dursun, Ferhat Ates, Ibrahim Yildirim, Ramazan Yuksel, Bulent Uysal, Turgut Topal, Yasemin Gulcan Kurt, Ayhan Ozcan, Ahmet Guven
OBJECTIVES: Extracorporeal shock wave lithotripsy (ESW) induces renal damage by excessive production of free oxygen radicals. Free Oxygen radicals cause cellular injury by inducing nicks in DNA. The enzyme poly(adenosine diphosphate-ribose) polymerase (PARP) involved in the process of repair of DNA in damaged cells. However, its activation in damaged cells can lead to adenosine triphosphate depletion and death. Thus, we designed a study to evaluate the efficacy of 3-aminobenzamide (3-AB), a PARP inhibitor, against extracorporeal shock wave induced renal injury...
November 2014: Renal Failure
Jing Li, Yingyu Chen, Buyuan Chen, Cai Chen, Binglin Qiu, Zhihong Zheng, Jing Zheng, Tingbo Liu, Wenfeng Wang, Jianda Hu
PURPOSE: The clinical outcome of chronic myeloid leukemia (CML) patients has been changed dramatically due to the development of imatinib (IM). However, the emergence of IM resistance, commonly associated with point mutations within the BCR-ABL kinase domain, remains a major clinical problem. Here, we investigated the effects of E35, a novel derivative of emodin, on the IM-resistant 32Dp210-T315I cells. METHODS: Cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide and colony formation assay...
February 2015: Journal of Cancer Research and Clinical Oncology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"