Read by QxMD icon Read


Brittany A Leigh, Anni Djurhuus, Mya Breitbart, Larry J Dishaw
The identification of host-specific bacterial and viral communities associated with diverse animals has led to the concept of the metaorganism, which defines the animal and all of its associated microbes as a single unit. Here we sequence the viruses found in the gut (i.e., the gut virome) of the marine invertebrate model system, Ciona intestinalis subtype A, in samples collected one year apart. We present evidence for a host-associated virome that is distinct from the surrounding seawater and contains some temporally-stable members...
November 15, 2017: Virus Research
Emine Guven-Maiorov, Chung-Jung Tsai, Ruth Nussinov
Hundreds of different species colonize multicellular organisms making them "metaorganisms". A growing body of data supports the role of microbiota in health and in disease. Grasping the principles of host-microbiota interactions (HMIs) at the molecular level is important since it may provide insights into the mechanisms of infections. The crosstalk between the host and the microbiota may help resolve puzzling questions such as how a microorganism can contribute to both health and disease. Integrated superorganism networks that consider host and microbiota as a whole-may uncover their code, clarifying perhaps the most fundamental question: how they modulate immune surveillance...
October 2017: PLoS Computational Biology
Peter Deines, Tim Lachnit, Thomas C G Bosch
Our conventional view of multicellular organisms often overlooks the fact that they are metaorganisms. They consist of a host, which is comprised of both a community of self-replicating cells that can compete as well as cooperate and a community of associated microorganisms. This newly discovered complexity raises a profound challenge: How to maintain such a multicellular association that includes independently replicating units and even different genotypes? Here, we identify competing forces acting at the host tissue level, the host-microbe interface, and within the microbial community as key factors to maintain the metaorganism Hydra...
September 2017: Immunological Reviews
Amiran Dzutsev, Jonathan H Badger, Ernesto Perez-Chanona, Soumen Roy, Rosalba Salcedo, Carolyne K Smith, Giorgio Trinchieri
Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair...
April 26, 2017: Annual Review of Immunology
Zisis Vryzas
Systemic pesticides (SPs) are usually recommended for soil treatments and as seed coating agents and are taken up from the soil by involving various plant-mediated processes, physiological, and morphological attributes of the root systems. Microscopic insights and next-generation sequencing combined with bioinformatics allow us now to identify new functions and interactions of plant-associated bacteria and perceive plants as meta-organisms. Host symbiotic, rhizo-epiphytic, endophytic microorganisms and their functions on plants have not been studied yet in accordance with uptake, tanslocation and action of pesticides...
2016: Frontiers in Microbiology
Peter Deines, Thomas C G Bosch
Animals are home to complex microbial communities, which are shaped through interactions within the community, interactions with the host, and through environmental factors. The advent of high-throughput sequencing methods has led to novel insights in changing patterns of community composition and structure. However, deciphering the different types of interactions among community members, with their hosts and their interplay with their environment is still a challenge of major proportion. The emerging fields of synthetic microbial ecology and community systems biology have the potential to decrypt these complex relationships...
2016: Frontiers in Microbiology
Alejandra Hernandez-Agreda, William Leggat, Pim Bongaerts, Tracy D Ainsworth
UNLABELLED: For ecosystems vulnerable to environmental change, understanding the spatiotemporal stability of functionally crucial symbioses is fundamental to determining the mechanisms by which these ecosystems may persist. The coral Pachyseris speciosa is a successful environmental generalist that succeeds in diverse reef habitats. The generalist nature of this coral suggests it may have the capacity to form functionally significant microbial partnerships to facilitate access to a range of nutritional sources within different habitats...
July 26, 2016: MBio
Birte Mensch, Sven C Neulinger, Angelika Graiff, Andreas Pansch, Sven Künzel, Martin A Fischer, Ruth A Schmitz
Marine multicellular organisms in composition with their associated microbiota-representing metaorganisms-are confronted with constantly changing environmental conditions. In 2110, the seawater temperature is predicted to be increased by ~5°C, and the atmospheric carbon dioxide partial pressure (pCO2) is expected to reach approximately 1000 ppm. In order to assess the response of marine metaorganisms to global changes, e.g., by effects on host-microbe interactions, we evaluated the response of epibacterial communities associated with Fucus vesiculosus forma mytili (F...
2016: Frontiers in Microbiology
Sofie Thijs, Wouter Sillen, Francois Rineau, Nele Weyens, Jaco Vangronsveld
Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood...
2016: Frontiers in Microbiology
Renee Greer, Xiaoxi Dong, Andrey Morgun, Natalia Shulzhenko
The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology...
2016: Gut Microbes
Gabriele Berg, Daria Rybakova, Martin Grube, Martina Köberl
The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts...
February 2016: Journal of Experimental Botany
Julie L Meyer, Sarath P Gunasekera, Raymond M Scott, Valerie J Paul, Max Teplitski
Disruption of the microbiome often correlates with the appearance of disease symptoms in metaorganisms such as corals. In Black Band Disease (BBD), a polymicrobial disease consortium dominated by the filamentous cyanobacterium Roseofilum reptotaenium displaces members of the epibiotic microbiome. We examined both normal surface microbiomes and BBD consortia on Caribbean corals and found that the microbiomes of healthy corals were dominated by Gammaproteobacteria, in particular Halomonas spp., and were remarkably stable across spatial and temporal scales...
May 2016: ISME Journal
Leonard A Mermel
No abstract text is available yet for this article.
2015: Future Microbiology
Walter Gottlieb Land
Modern immunology, in many ways, is based on 3 major paradigms: the clonal selection theory (Medawar, Burnet; 1953/1959), the pattern recognition theory (Janeway; 1989), and the danger/injury theory (Matzinger, Land; 1994). The last theory holds that any cell stress and tissue injury including allograft injury, via induction of damage-associated molecular patterns, induces immunity including alloimmunity leading to allograft rejection. On the other hand, the concept precludes that "non-self " per se induces immunity as proposed by the two former theories...
April 2015: Experimental and Clinical Transplantation
Florence Abram
Some of the most transformative discoveries promising to enable the resolution of this century's grand societal challenges will most likely arise from environmental science and particularly environmental microbiology and biotechnology. Understanding how microbes interact in situ, and how microbial communities respond to environmental changes remains an enormous challenge for science. Systems biology offers a powerful experimental strategy to tackle the exciting task of deciphering microbial interactions. In this framework, entire microbial communities are considered as metaorganisms and each level of biological information (DNA, RNA, proteins and metabolites) is investigated along with in situ environmental characteristics...
2015: Computational and Structural Biotechnology Journal
Christoph A Thaiss, David Zeevi, Maayan Levy, Gili Zilberman-Schapira, Jotham Suez, Anouk C Tengeler, Lior Abramson, Meirav N Katz, Tal Korem, Niv Zmora, Yael Kuperman, Inbal Biton, Shlomit Gilad, Alon Harmelin, Hagit Shapiro, Zamir Halpern, Eran Segal, Eran Elinav
All domains of life feature diverse molecular clock machineries that synchronize physiological processes to diurnal environmental fluctuations. However, no mechanisms are known to cross-regulate prokaryotic and eukaryotic circadian rhythms in multikingdom ecosystems. Here, we show that the intestinal microbiota, in both mice and humans, exhibits diurnal oscillations that are influenced by feeding rhythms, leading to time-specific compositional and functional profiles over the course of a day. Ablation of host molecular clock components or induction of jet lag leads to aberrant microbiota diurnal fluctuations and dysbiosis, driven by impaired feeding rhythmicity...
October 23, 2014: Cell
Mairi H McLean, Dario Dieguez, Lindsey M Miller, Howard A Young
The microbiota of the human metaorganism is not a mere bystander. These microbes have coevolved with us and are pivotal to normal development and homoeostasis. Dysbiosis of the GI microbiota is associated with many disease susceptibilities, including obesity, malignancy, liver disease and GI pathology such as IBD. It is clear that there is direct and indirect crosstalk between this microbial community and host immune response. However, the precise mechanism of this microbial influence in disease pathogenesis remains elusive and is now a major research focus...
February 2015: Gut
Amiran Dzutsev, Romina S Goldszmid, Sophie Viaud, Laurence Zitvogel, Giorgio Trinchieri
Commensal microorganisms colonize barrier surfaces of all multicellular organisms, including those of humans. For more than 500 million years, commensal microorganisms and their hosts have coevolved and adapted to each other. As a result, the commensal microbiota affects many immune and nonimmune functions of their hosts, and de facto the two together comprise one metaorganism. The commensal microbiota communicates with the host via biologically active molecules. Recently, it has been reported that microbial imbalance may play a critical role in the development of multiple diseases, such as cancer, autoimmune conditions, and increased susceptibility to infection...
January 2015: European Journal of Immunology
Paolo Garagnani, Chiara Pirazzini, Cristina Giuliani, Marco Candela, Patrizia Brigidi, Federica Sevini, Donata Luiselli, Maria Giulia Bacalini, Stefano Salvioli, Miriam Capri, Daniela Monti, Daniela Mari, Sebastiano Collino, Massimo Delledonne, Patrick Descombes, Claudio Franceschi
Usually the genetics of human longevity is restricted to the nuclear genome (nDNA). However it is well known that the nDNA interacts with a physically and functionally separated genome, the mitochondrial DNA (mtDNA) that, even if limited in length and number of genes encoded, plays a major role in the ageing process. The complex interplay between nDNA/mtDNA and the environment is most likely involved in phenomena such as ageing and longevity. To this scenario we have to add another level of complexity represented by the microbiota, that is, the whole set of bacteria present in the different part of our body with their whole set of genes...
2014: BioMed Research International
Terrence H Bell, Simon Joly, Frédéric E Pitre, Etienne Yergeau
Phytoremediation is a cost-effective green alternative to traditional soil remediation technologies, but has experienced varied success in practice. The recent omics revolution has led to leaps in our understanding of soil microbial communities and plant metabolism, and some of the conditions that promote predictable activity in contaminated soils and heterogeneous environments. Combinations of omics tools and new bioinformatics approaches will allow us to understand integrated activity patterns between plants and microbes, and determine how this metaorganism can be modified to maximize growth, appropriate assembly of microbial communities, and, ultimately, phytoremediation activity...
May 2014: Trends in Biotechnology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"