Read by QxMD icon Read


Claudio Asencio, María A Rodríguez-Hernandez, Paz Briones, Julio Montoya, Ana Cortés, Sonia Emperador, Angela Gavilán, Eduardo Ruiz-Pesini, Dèlia Yubero, Raquel Montero, Mercedes Pineda, María M O'Callaghan, María Alcázar-Fabra, Leonardo Salviati, Rafael Artuch, Plácido Navas
Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased...
March 2016: European Journal of Human Genetics: EJHG
Ran Won, Kyung Hee Lee, Bae Hwan Lee
This study investigated the neuroprotective effects of coenzyme Q10 (CoQ10) against oxidative stress induced by kainic acid (KA) in organotypic hippocampal slice culture of rats. Cultured slices were injured by exposure to 5 µM of KA for 18 h and then treated with different concentrations of CoQ10. Neuronal cell death measured as propidium iodide uptake was reduced at 24 h after treatment with 1 µM of CoQ10. We also observed an increased number of surviving CA3 neurons in 0.1 and 1 µM concentrations of CoQ10-treated groups using cresyl violet staining...
October 5, 2011: Neuroreport
Alexandra Fischer, Constance Schmelzer, Gerald Rimbach, Petra Niklowitz, Thomas Menke, Frank Döring
BACKGROUND: Coenzyme Q10 (CoQ10) is essential for mitochondrial energy production and serves as an antioxidants in extra mitochondrial membranes. The genetics of primary CoQ10 deficiency has been described in several studies, whereas the influence of common genetic variants on CoQ10 status is largely unknown. Here we tested for non-synonymous single-nucleotidepolymorphisms (SNP) in genes involved in the biosynthesis (CoQ3G272S , CoQ6M406V, CoQ7M103T), reduction (NQO1P187S, NQO2L47F) and metabolism (apoE3/4) of CoQ10 and their association with CoQ10 status...
2011: BMC Research Notes
Roman H Haefeli, Michael Erb, Anja C Gemperli, Dimitri Robay, Isabelle Courdier Fruh, Corinne Anklin, Robert Dallmann, Nuri Gueven
Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2...
2011: PloS One
Francesca Bruge, Samantha Virgili, Tiziana Cacciamani, Federica Principi, Luca Tiano, Gian Paolo Littarru
Two-electron reduction of quinones catalyzed by NAD(P)H:quinone oxidoreductase (NQO1) protects cells against oxidative stress and toxic quinones. In fact, low level of NQO1 activity is often associated with increased risk of developing different types of tumours and with toxic effects linked to environmental quinones. In a previous report we analyzed the relationship between the oxidative stress induced by UV radiation and CoQ10 content in Burkitt's lymphoma cell lines compared to HL-60. The basal content of CoQ10 in Raji cells was slightly higher compared to HL-60...
2008: BioFactors
Takayuki Takahashi, Masaaki Okuno, Tadashi Okamoto, Takeo Kishi
We purified an NADPH-dependent coenzyme Q reductase (NADPH-CoQ reductase) in rat liver cytosol and compared its enzymatic properties with those of the other CoQ10 reductases such as NADPH: quinone acceptor oxidoreductase 1 (NQO1), lipoamide dehydrogenase, thioredoxine reductase and glutathione reductase. NADPH-CoQ reductase was the only enzyme that preferred NADPH to NADH as an electron donor and was also different from the other CoQ10 reductases in the sensitivities to its inhibitors and stimulators. Especially, Zn2+ was the most powerful inhibitor for NADPH-CoQ reductase, but CoQ10 reduction by the other CoQ10 reductases could not be inhibited by Zn2+...
2008: BioFactors
Rosario I Bello, Consuelo Gómez-Díaz, María I Burón, Francisco J Alcaín, Plácido Navas, José M Villalba
Coenzyme Q10 supplementation increases life-span of rats fed on a diet enriched with polyunsaturated fatty acids (Quiles, J.L., Ochoa, J.J., Huertas, J.R., Mataix, J., 2004b. Coenzyme Q supplementation protects from age-related DNA double-strand breaks and increased lifespan in rats fed on a PUFA-rich diet. Exp. Gerontol. 39, 189-194). Our study was set as a first attempt to establish a mechanistic link between life span extension and CoQ10 supplementation. When rats were fed on a PUFAn-6 plus CoQ10 diet, levels of CoQ10 were increased in plasma membrane at every time point compared to control rats fed on a PUFAn-6-alone diet...
August 2005: Experimental Gerontology
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"