keyword
MENU ▼
Read by QxMD icon Read
search

SMN

keyword
https://www.readbyqxmd.com/read/28095296/diverse-role-of-survival-motor-neuron-protein
#1
REVIEW
Ravindra N Singh, Matthew D Howell, Eric W Ottesen, Natalia N Singh
The multifunctional Survival Motor Neuron (SMN) protein is required for the survival of all organisms of the animal kingdom. SMN impacts various aspects of RNA metabolism through the formation and/or interaction with ribonucleoprotein (RNP) complexes. SMN regulates biogenesis of small nuclear RNPs, small nucleolar RNPs, small Cajal body-associated RNPs, signal recognition particles and telomerase. SMN also plays an important role in DNA repair, transcription, pre-mRNA splicing, histone mRNA processing, translation, selenoprotein synthesis, macromolecular trafficking, stress granule formation, cell signaling and cytoskeleton maintenance...
January 14, 2017: Biochimica et Biophysica Acta
https://www.readbyqxmd.com/read/28088670/fibrin-hydrogels-induce-mixed-dorsal-ventral-spinal-neuron-identities-during-differentiation-of-human-induced-pluripotent-stem-cells
#2
John M Edgar, Meghan Robinson, Stephanie M Willerth
: We hypothesized that generating spinal motor neurons (sMNs) from human induced pluripotent stem cell (hiPSC)-derived neural aggregates (NAs) using a chemically-defined differentiation protocol would be more effective inside of 3D fibrin hydrogels compared to 2D poly-L-ornithine(PLO)/laminin-coated tissue culture plastic surfaces. We performed targeted RNA-Seq using next generation sequencing to determine the substrate-specific differences in gene expression that regulate cell phenotype...
January 11, 2017: Acta Biomaterialia
https://www.readbyqxmd.com/read/28069797/oligodendrocyte-development-and-cns-myelination-are-unaffected-in-a-mouse-model-of-severe-spinal-muscular-atrophy
#3
Ryan W O'Meara, Sarah E Cummings, Yves De Repentigny, Emily McFall, John-Paul Michalski, Marc-Olivier Deguise, Sabrina Gibeault, Rashmi Kothary
The childhood neurodegenerative disease spinal muscular atrophy (SMA) is caused by loss-of-function mutations or deletions in the Survival Motor Neuron 1 (SMN1) gene resulting in insufficient levels of survival motor neuron (SMN) protein. Classically considered a motor neuron disease, increasing evidence now supports SMA as a multi-system disorder with phenotypes discovered in cortical neuron, astrocyte, and Schwann cell function within the nervous system. In this study, we sought to determine whether Smn was critical for oligodendrocyte (OL) development and central nervous system myelination...
January 9, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28062667/smn-deficiency-negatively-impacts-red-pulp-macrophages-and-spleen-development-in-mouse-models-of-spinal-muscular-atrophy
#4
Marie-Therese Khairallah, Jacob Astroski, Sarah K Custer, Elliot J Androphy, Craig L Franklin, Christian L Lorson
Spinal muscular atrophy (SMA) is a progressive neurodegenerative disease that is the leading genetic cause of infantile death. It is caused by severe deficiency of the ubiquitously expressed Survival Motor Neuron (SMN) protein. SMA is characterized by α-lower motor neuron loss and muscle atrophy, however, there is a growing list of tissues impacted by SMN deficiency beyond motor neurons. The non-neuronal defects are observed in the most severe Type I SMA patients and most of the widely used SMA mouse models, however, as effective therapeutics are developed, it is unclear whether additional symptoms will be uncovered in longer lived patients...
January 5, 2017: Human Molecular Genetics
https://www.readbyqxmd.com/read/28054357/linking-amyotrophic-lateral-sclerosis-and-spinal-muscular-atrophy-through-rna-transcriptome-homeostasis-a-genomics-perspective
#5
REVIEW
Margarida Gama-Carvalho, Marina L Garcia-Vaquero, Francisco R Pinto, Florence Besse, Joachim Weis, Aaron Voigt, Jörg B Schulz, Javier De Las Rivas
In this review we present our most recent understanding of key biomolecular processes that underlie two motor neuron degenerative disorders, Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). We focus on the role of four multifunctional proteins involved in RNA metabolism (TDP-43, FUS, SMN and Senataxin) that play a causal role in these diseases. Recent results have led to a novel scenario of intricate connections between these four proteins, bringing transcriptome homeostasis into the spotlight as a common theme in motor neuron degeneration...
January 5, 2017: Journal of Neurochemistry
https://www.readbyqxmd.com/read/28046524/su-f-t-502-fff-beams-jaw-tracking-and-treatment-techniques-out-of-field-dose-considerations-for-pediatric-radiation-therapy-delivery
#6
Y Ben Bouchta, A Bergman
PURPOSE: To compare the extended dose profile delivered by 3DCRT and VMAT techniques for flattened and flattening-filter-free(FFF) photon beams (6X, 6XFFF,10XFFF), with and without jaw-tracking (JT) on Varian TrueBeam linac. The goal is to determine which treatment technique/modality will minimize the peripheral photon dose exposure (and ultimately minimize the risk of second malignant neoplasms (SMN)) in pediatric patients. METHODS: 3DCRT, VMAT, and jaw tracking VMAT (JTVMAT) plans with 6X, 6XFFF and 10XFFF x-ray beams were created on a 30×60×22...
June 2016: Medical Physics
https://www.readbyqxmd.com/read/28033528/neuroblastoma-survivors-are-at-increased-risk-for-second-malignancies-a-report-from-the-international-neuroblastoma-risk-group-project
#7
Mark A Applebaum, Zalman Vaksman, Sang Mee Lee, Eric A Hungate, Tara O Henderson, Wendy B London, Navin Pinto, Samuel L Volchenboum, Julie R Park, Arlene Naranjo, Barbara Hero, Andrew D Pearson, Barbara E Stranger, Susan L Cohn, Sharon J Diskin
BACKGROUND: The incidence of second malignant neoplasm (SMN) within the first ten years of diagnosis in high-risk neuroblastoma patients treated with modern, intensive therapy is unknown. Further, the underlying germline genetics that contribute to SMN in these survivors are not known. METHODS: The International Neuroblastoma Risk Group (INRG) database of patients diagnosed from 1990 to 2010 was analysed. SMN risk was accessed by cumulative incidence, standardised incidence ratios (SIRs) and absolute excess risk...
December 26, 2016: European Journal of Cancer
https://www.readbyqxmd.com/read/28031290/retraction-notice-the-smn-structure-reveals-its-crucial-role-in-snrnp-assembly
#8
Chenda O Seng, Craig Magee, Philip J Young, Christian L Lorson, James P Allen
No abstract text is available yet for this article.
December 27, 2016: Human Molecular Genetics
https://www.readbyqxmd.com/read/28018219/silymarin-protects-mouse-liver-and-kidney-from-thioacetamide-induced-toxicity-by-scavenging-reactive-oxygen-species-and-activating-pi3k-akt-pathway
#9
Shatadal Ghosh, Abhijit Sarkar, Sudip Bhattacharyya, Parames C Sil
Silymarin (SMN) has been shown to possess a wide range of biological and pharmacological effects. Besides, SMN has antioxidant and free radical scavenging activities. Thioacetamide (TAA) is a well-documented liver toxin that requires oxidative bioactivation to elicit its hepatotoxic effect which ultimately modifies amine-lipids and proteins. Our study has been designed in a TAA exposed mouse model to investigate whether SMN could protect TAA-induced oxidative stress mediated hepatic and renal damage. Results suggest that TAA generated reactive oxygen species (ROS), caused oxidative stress and induced apoptosis in the liver and kidney cells via JNK as well as PKC and MAPKs signaling...
2016: Frontiers in Pharmacology
https://www.readbyqxmd.com/read/28017471/the-antisense-transcript-smn-as1-regulates-smn-expression-and-is-a-novel-therapeutic-target-for-spinal-muscular-atrophy
#10
Constantin d'Ydewalle, Daniel M Ramos, Noah J Pyles, Shi-Yan Ng, Mariusz Gorz, Celeste M Pilato, Karen Ling, Lingling Kong, Amanda J Ward, Lee L Rubin, Frank Rigo, C Frank Bennett, Charlotte J Sumner
The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2...
January 4, 2017: Neuron
https://www.readbyqxmd.com/read/27939059/treatment-of-infantile-onset-spinal-muscular-atrophy-with-nusinersen-a-phase-2-open-label-dose-escalation-study
#11
Richard S Finkel, Claudia A Chiriboga, Jiri Vajsar, John W Day, Jacqueline Montes, Darryl C De Vivo, Mason Yamashita, Frank Rigo, Gene Hung, Eugene Schneider, Daniel A Norris, Shuting Xia, C Frank Bennett, Kathie M Bishop
BACKGROUND: Nusinersen is a 2'-O-methoxyethyl phosphorothioate-modified antisense drug being developed to treat spinal muscular atrophy. Nusinersen is specifically designed to alter splicing of SMN2 pre-mRNA and thus increase the amount of functional survival motor neuron (SMN) protein that is deficient in patients with spinal muscular atrophy. METHODS: This open-label, phase 2, escalating dose clinical study assessed the safety and tolerability, pharmacokinetics, and clinical efficacy of multiple intrathecal doses of nusinersen (6 mg and 12 mg dose equivalents) in patients with infantile-onset spinal muscular atrophy...
December 17, 2017: Lancet
https://www.readbyqxmd.com/read/27917293/alternative-splicing-of-a-cryptic-exon-embedded-in-intron-6-of-smn1-and-smn2
#12
Satomi Yoshimoto, Nur Imma Fatimah Harahap, Yuko Hamamura, Mawaddah Ar Rochmah, Ai Shima, Naoya Morisada, Masakazu Shinohara, Toshio Saito, Kayoko Saito, Poh San Lai, Masafumi Matsuo, Hiroyuki Awano, Ichiro Morioka, Kazumoto Iijima, Hisahide Nishio
Both survival of motor neuron (SMN) genes are associated with spinal muscular atrophy; mutations in SMN1 cause the disease, and SMN2 modulates its severity. It is established that different alternative splicing of exon 7 occurs for SMN1 and SMN2, and a cryptic exon was recently found in intron 6 of both genes. Here, we characterize this cryptic exon and clarify its alternative splicing pattern in control and spinal muscular atrophy cells.
2016: Human Genome Variation
https://www.readbyqxmd.com/read/27911332/type-0-spinal-muscular-atrophy-further%C3%A2-delineation-of-prenatal-and%C3%A2-postnatal-features-in-16-patients
#13
Sarah Grotto, Jean-Marie Cuisset, Stéphane Marret, Séverine Drunat, Patricia Faure, Séverine Audebert-Bellanger, Isabelle Desguerre, Vincent Flurin, Anne-Gaëlle Grebille, Anne-Marie Guerrot, Hubert Journel, Gilles Morin, Ghislaine Plessis, Sylvain Renolleau, Joëlle Roume, Brigitte Simon-Bouy, Renaud Touraine, Marjolaine Willems, Thierry Frébourg, Eric Verspyck, Pascale Saugier-Veber
BACKGROUND: Spinal muscular atrophy (SMA) is caused by homozygous inactivation of the SMN1 gene. The SMN2 copy number modulates the severity of SMA. The 0SMN1/1SMN2 genotype, the most severe genotype compatible with life, is expected to be associated with the most severe form of the disease, called type 0 SMA, defined by prenatal onset. OBJECTIVE: The aim of the study was to review clinical features and prenatal manifestations in this rare SMA subtype. METHODS: SMA patients with the 0SMN1/1SMN2 genotype were retrospectively collected using the UMD-SMN1 France database...
November 29, 2016: Journal of Neuromuscular Diseases
https://www.readbyqxmd.com/read/27910222/cyclic-vomiting-syndrome-is-characterized-by-altered-functional-brain-connectivity-of-the-insular-cortex-a-cross-comparison-with-migraine-and-healthy-adults
#14
D-M Ellingsen, R G Garcia, J Lee, R L Lin, J Kim, A H Thurler, S Castel, L Dimisko, B R Rosen, N Hadjikhani, B Kuo, V Napadow
Cyclic Vomiting Syndrome (CVS) has been linked to episodic migraine, yet little is known about the precise brain-based mechanisms underpinning CVS, and whether these associated conditions share similar pathophysiology. We investigated the functional integrity of salience (SLN) and sensorimotor (SMN) intrinsic connectivity networks in CVS, migraine and healthy controls using brain functional Magnetic Resonance Imaging. CVS, relative to both migraine and controls, showed increased SLN connectivity to middle/posterior insula, a key brain region for nausea and viscerosensory processing...
December 1, 2016: Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society
https://www.readbyqxmd.com/read/27907033/normalization-of-patient-identified-plasma-biomarkers-in-smn%C3%AE-7-mice-following-postnatal-smn-restoration
#15
W David Arnold, Sandra Duque, Chitra C Iyer, Phillip Zaworski, Vicki L McGovern, Shannon J Taylor, Katharine M von Herrmann, Dione T Kobayashi, Karen S Chen, Stephen J Kolb, Sergey V Paushkin, Arthur H M Burghes
INTRODUCTION AND OBJECTIVE: Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function...
2016: PloS One
https://www.readbyqxmd.com/read/27894420/structural-basis-for-the-recognition-of-spliceosomal-smn-b-b-proteins-by-the-rbm5-ocre-domain-in-splicing-regulation
#16
André Mourão, Sophie Bonnal, Komal Soni, Lisa Warner, Rémy Bordonné, Juan Valcárcel, Michael Sattler
The multi-domain splicing factor RBM5 regulates the balance between antagonistic isoforms of the apoptosis-control genes FAS/CD95, Caspase-2 and AID. An OCRE (OCtamer REpeat of aromatic residues) domain found in RBM5 is important for alternative splicing regulation and mediates interactions with components of the U4/U6.U5 tri-snRNP. We show that the RBM5 OCRE domain adopts a unique β-sheet fold. NMR and biochemical experiments demonstrate that the OCRE domain directly binds to the proline-rich C-terminal tail of the essential snRNP core proteins SmN/B/B'...
November 29, 2016: ELife
https://www.readbyqxmd.com/read/27894243/spinal-muscular-atrophy-more-than-a-disease-of-motor-neurons
#17
L A Nash, J K Burns, J W Chardon, R Kothary, R J Parks
Spinal muscular atrophy (SMA) is the most common genetically inherited neurodegenerative disease resulting in infant mortality. SMA is caused by genetic deletion or mutation in the survival motor neuron 1 (SMN1) gene, which results in reduced levels of the survival of motor neuron (SMN) protein. SMN protein deficiency preferentially affects α- motor neurons, leading to their degeneration and subsequent atrophy of limb and trunk muscles, progressing to death in severe forms of the disease. More recent studies have shown that SMN protein depletion is detrimental to the functioning of other tissues including skeletal muscle, heart, autonomic and enteric nervous systems, metabolic/endocrine (e...
November 28, 2016: Current Molecular Medicine
https://www.readbyqxmd.com/read/27893852/a-comparative-study-of-smn-protein-and-mrna-in-blood-and-fibroblasts-in-patients-with-spinal-muscular-atrophy-and-healthy-controls
#18
Renske I Wadman, Marloes Stam, Marc D Jansen, Yana van der Weegen, Camiel A Wijngaarde, Oliver Harschnitz, Peter Sodaar, Kees P J Braun, Dennis Dooijes, Henny H Lemmink, Leonard H van den Berg, W Ludo van der Pol
BACKGROUND: Clinical trials to test safety and efficacy of drugs for patients with spinal muscular atrophy (SMA) are currently underway. Biomarkers that document treatment-induced effects are needed because disease progression in childhood forms of SMA is slow and clinical outcome measures may lack sensitivity to detect meaningful changes in motor function in the period of 1-2 years of follow-up during randomized clinical trials. OBJECTIVE: To determine and compare SMN protein and mRNA levels in two cell types (i...
2016: PloS One
https://www.readbyqxmd.com/read/27891608/compensatory-axon-sprouting-for-very-slow-axonal-die-back-in-a-transgenic-model-of-spinal-muscular-atrophy-type-iii
#19
Esther Udina, Charles Putman, Luke Harris, N Tyreman, Victoria Cook, Tessa Gordon
Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn+/- transgenic mouse model of mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections...
November 28, 2016: Journal of Physiology
https://www.readbyqxmd.com/read/27882347/ml372-blocks-smn-ubiquitination-and-improves-spinal-muscular-atrophy-pathology-in-mice
#20
Mahlet B Abera, Jingbo Xiao, Jonathan Nofziger, Steve Titus, Noel Southall, Wei Zheng, Kasey E Moritz, Marc Ferrer, Jonathan J Cherry, Elliot J Androphy, Amy Wang, Xin Xu, Christopher Austin, Kenneth H Fischbeck, Juan J Marugan, Barrington G Burnett
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease and one of the leading inherited causes of infant mortality. SMA results from insufficient levels of the survival motor neuron (SMN) protein, and studies in animal models of the disease have shown that increasing SMN protein levels ameliorates the disease phenotype. Our group previously identified and optimized a new series of small molecules, with good potency and toxicity profiles and reasonable pharmacokinetics, that were able to increase SMN protein levels in SMA patient-derived cells...
November 17, 2016: JCI Insight
keyword
keyword
89013
1
2
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"